×

Modulation instability, bifurcation analysis and solitonic waves in nonlinear optical media with odd-order dispersion. (English) Zbl 1535.81109

Summary: In this paper, modulation instability, bifurcation analysis, and soliton solutions are investigated in nonlinear media with odd-order dispersion terms. A generalized nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity is considered. A linear analysis method is used to derive an expression of the modulation instability spectrum, and the effects of the fourth-order and group velocity dispersion are pointed out on the modulation instability bands. The results show that for negative values of the fourth order in a normal dispersion regime, the modulation instability vanishes. Another important aspect is revealed when the fourth-order dispersion gets positive and has high values; additional bands emerge to enlarge the bandwidths of the modulation instability. To further confirm the effects of the odd-order dispersion in the nonlinear structure, the bifurcation, phase portraits, and chaotic behaviors have been investigated to show how instability arises in the nonlinear structure. Using numerical simulation, in particular the Runge-Kutta algorithm, the sensitivity of nonlinear systems is pointed out to confirm an unstable behavior. This investigation confirms once again the fact that the modulation spectrum is sensitive to higher-order dispersion in normal and anomalous dispersion regimes. A traveling wave hypothesis is employed to lead to the direct integration of the nonlinear system, and some specific soliton solutions are extracted. For particular constraint conditions on the discriminant, bright and dark solitons as well as Jacobi elliptic function solutions emerge. The obtained results could be used to improve the transmission signal via the optical fiber and secure the data in communication systems.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
94A14 Modulation and demodulation in information and communication theory
70K50 Bifurcations and instability for nonlinear problems in mechanics
37G10 Bifurcations of singular points in dynamical systems
81Q50 Quantum chaos
35C08 Soliton solutions
78A60 Lasers, masers, optical bistability, nonlinear optics
78A48 Composite media; random media in optics and electromagnetic theory
81U30 Dispersion theory, dispersion relations arising in quantum theory
76F65 Direct numerical and large eddy simulation of turbulence
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Hong, W.-P., Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrödinger equation. Opt. Commun., 173-182 (2002)
[2] Hong, W.-P., Modulational instability of the higher-order nonlinear Schrödinger equation with fourth-order dispersion and quintic nonlinear terms. Z. Naturforsch., 225-234 (2006)
[3] Cavalcanti, S. B.; Cressoni, J. C.; da Cruz, H. R.; Gouveia-Neto, A. S., Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. E, 6162 (1991)
[4] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical physics in dispersive dielectric fibers I: anomalous dispersion. Appl. Phys. Lett., 142-144 (1973)
[5] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical physics in dispersive dielectric fibers II: normal dispersion. Appl. Phys. Lett., 171-172 (1973)
[6] Mollenauer, L. F.; Stolen, R. H.; Gordon, J. P., Experimental-observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett., 1095-1098 (1980)
[7] Agrawal, G. P., Nonlinear Fiber Optics (1995), Academic Press: Academic Press New York
[8] de Sterke, C. M.; Li, G. H.Y.; Lo, C. W.; Stefani, A.; Redondo, A. B., Propagation and scaling of pure quartic solitons, frontiers in optics (2017)
[9] Höök, A.; Karlsson, M., Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion. Opt. Lett., 1388 (1993)
[10] Kodama, Y., Optical solitons in a monomode fiber. J. Stat. Phys., 597-614 (1985)
[11] Gedalin, M.; Scott, T. C.; Band, Y. B., Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett., 448-451 (1997)
[12] Abdullaev, F. K.; Bouketir, A.; Messikh, A.; Umarov, B. A., Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrödinger equation. Physica D, 54 (2007) · Zbl 1125.37052
[13] Rothenberg, J. E., Modulational instability for normal dispersion. Phys. Rev. A, 682 (1990)
[14] Abbagari, S.; Houwe, A.; Akinyemi, L.; Saliou, Y.; Bouetou, T. B., Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain. Chaos Solitons Fractals (2022) · Zbl 1504.82063
[15] Ablowitz, M. J., Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (2011), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1232.35002
[16] Dai, C. Q.; Wang, Y. Y.; Zhang, J. F., Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn., 1, 379-391 (2020)
[17] Dai, C. Q.; Wang, Y. Y.; Fan, Y.; Yu, D. G., Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn., 1351-1358 (2018)
[18] Hosseini, K.; Sadri, K.; Mirzazadeh, M.; Salahshour, S., An integrable \((2 + 1)\)-dimensional nonlinear Schrödinger system and its optical soliton solutions. Optik, 1-6 (2021)
[19] Sulem, C.; Sulem, P. L., The Nonlinear Schrödinger Equation (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0867.35094
[20] Wang, Y. Y.; Dai, C. Q.; Zhou, G. Q.; Fan, Y.; Chen, L., Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn., 1, 67-73 (2017)
[21] Akinyemi, L.; Inc, M.; Khater, M. M.; Rezazadeh, H., Dynamical behaviour of chiral nonlinear Schrödinger equation. Opt. Quantum Electron., 3, 191 (2022)
[22] Fang, Y.; Wu, G.-Z.; Wang, Y.-Y.; Dai, C.-Q., Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn., 603-616 (2021)
[23] Biswas, A.; Rezazadeh, H.; Mirzazadeh, M.; Eslami, M.; Zhou, Q.; Moshokoa, S. P.; Belic, M., Optical solitons having weak non-local nonlinearity by two integration schemes. Optik, 380-384 (2018)
[24] Biswas, A.; Milovic, D., Bright and dark solitons of the generalized nonlinear Schrödinger’s equation. Commun. Nonlinear Sci. Numer. Simul., 1473-1484 (2010) · Zbl 1221.78033
[25] Dai, C. Q.; Wang, Y. Y., Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn., 3, 1733-1741 (2020)
[26] Dai, C. Q.; Wang, Y. Y.; Fan, Y.; Zhang, J. F., Interactions between exotic multi-valued solitons of the \((2 + 1)\)-dimensional Korteweg-de Vries equation describing shallow water wave. Appl. Math. Model., 506-515 (2020) · Zbl 1481.35351
[27] Geng, K.-L.; Mou, D.-S.; Dai, C.-Q., Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn., 603-617 (2023)
[28] Yang, S.; Zheng, J.; Qi, Y.; Shi, Y.; Li, D.; Nie, X.; Sun, Z., Widely-tunable harmonic mode-locked fiber laser by the combination of spectral filtering and gain management. Opt. Laser Technol. (2023)
[29] Yang, J.; Zhu, Y.; Qin, W.; Wang, S.; Dai, C.; Li, J., Higher-dimensional soliton structures of a variable-coefficient Gross-Pitaevskii equation with the partially nonlocal nonlinearity under a harmonic potential. Nonlinear Dyn., 2551-2562 (2022)
[30] Wen, X.-K.; Jiang, J.-H.; Liu, W.; Dai, C.-Q., Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn., 13343-13355 (2023)
[31] Zhou, Q.; Triki, H.; Xu, J.; Zeng, Z.; Liu, W.; Biswas, A., Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fractals (2022) · Zbl 1504.74047
[32] Ullah, N.; Asjad, M. I.; Rehman, H. U.; Akgül, A., Construction of optical solitons of Radhakrishnan-Kundu-Lakshmanan equation in birefringent fibers. Nonlinear Engineering., 80-91 (2022)
[33] Bo, W.-B.; Wang, R.-R.; Fang, Y.; Wang, Y.-Y.; Dai, C.-Q., Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn., 1577-1588 (2023)
[34] Chen, Y.-X.; Xiao, X., Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials. Nonlinear Dyn., 2003-2012 (2022)
[35] Radha, R.; Lakshmanan, M., Singularity structure analysis and bilinear form of a \((2 + 1)\) dimensional non-linear Schrödinger (NLS) equation. Inverse Probl., 29-32 (1994) · Zbl 0809.35127
[36] Hosseini, K.; Salahshour, S.; Mirzazadeh, M., Bright and dark solitons of a weakly nonlocal Schrödinger equation involving the parabolic law nonlinearity. Optik, 1-6 (2020)
[37] Seadawy, A. R.; Alamri, S. Z., Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions. Results Phys., 286-291 (2018)
[38] Wazwaz, A. M., Bright and dark optical solitons for \((2 + 1)\)-dimensional Schrödinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes. Optik, 1-5 (2019)
[39] Biswas, A.; Yildirim, Y.; Yasar, E.; Triki, H.; Alshomrani, A. S.; Ullah, M. Z.; Zhou, Q.; Moshokoa, S. P.; Belic, M., Optical soliton perturbation for complex Ginzburg-Landau equation with modified simple equation method. Optik, 399-415 (2018)
[40] Wang, Y. Y.; Zhang, Y. P.; Dai, C. Q., Re-study on localized structures based on variable separation solutions from the modified tanh-function method. Nonlinear Dyn., 3, 1331-1339 (2016)
[41] Akbar, M. A.; Akinyemi, L.; Yao, S. W.; Jhangeer, A.; Rezazadeh, H.; Khater, M. M.; Ahmad, H.; Inc, M., Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. (2021)
[42] Akinyemi, L.; Senol, M.; Iyiola, O. S., Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul., 211-233 (2021) · Zbl 1524.35672
[43] Jafari, H.; Tajadodi, H.; Baleanu, D., Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J. Comput. Nonlinear Dyn., 2 (2014)
[44] Rezazadeh, H., New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik, 218-227 (2018)
[45] Abbagari, S.; Houwe, A.; Doka, S. Y.; Bouetou, T. B.; Inc, M.; Crepin, K. T., W-shaped profile and multiple optical soliton structure of the coupled nonlinear Schrödinger equation with the four-wave mixing term and modulation instability spectrum. Phys. Lett. A (2021) · Zbl 07413633
[46] Az-Zo’bi, E. A.; Alzoubi, W. A.; Akinyemi, L.; Şenol, M.; Masaedeh, B. S., A variety of wave amplitudes for the conformable fractional \((2 + 1)\)-dimensional Ito equation. Mod. Phys. Lett. B, 15 (2021)
[47] Mirzazadeh, M.; Yildirim, Y.; Yassar, E.; Triki, H.; Zhou, Q.; Moshokoa, S. P.; Ullah, M. Z.; Seadawy, A. R.; Biswas, A.; Belic, M., Optical solitons and conservation law of Kundu-Eckhaus equation. Optik, 551-557 (2018)
[48] Vahidi, J.; Zekavatmand, S. M.; Rezazadeh, H.; Inc, M.; Akinlar, M. A.; Chu, Y. M., New solitary wave solutions to the coupled Maccari’s system. Results Phys. (2021)
[49] Ghanbari, B.; Inc, M.; Rada, L., Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput., 2, 568-589 (2019) · Zbl 1461.35095
[50] Akinyemi, L., Shallow ocean soliton and localized waves in extended \((2 + 1)\)-dimensional nonlinear evolution equations. Phys. Lett. A (2023) · Zbl 1516.86002
[51] Inc, M.; Rezazadeh, H.; Vahidi, J.; Eslami, M.; Akinlar, M. A.; Ali, M. N.; Chu, Y. M., New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Math., 6, 6972-6984 (2020) · Zbl 1484.35380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.