×

A fully diagonalized spectral method using generalized Laguerre functions on the half line. (English) Zbl 1387.76077

Summary: A fully diagonalized spectral method using generalized Laguerre functions is proposed and analyzed for solving elliptic equations on the half line. We first define the generalized Laguerre functions which are complete and mutually orthogonal with respect to an equivalent Sobolev inner product. Then the Fourier-like Sobolev orthogonal basis functions are constructed for the diagonalized Laguerre spectral method of elliptic equations. Besides, a unified orthogonal Laguerre projection is established for various elliptic equations. On the basis of this orthogonal Laguerre projection, we obtain optimal error estimates of the fully diagonalized Laguerre spectral method for both Dirichlet and Robin boundary value problems. Finally, numerical experiments, which are in agreement with the theoretical analysis, demonstrate the effectiveness and the spectral accuracy of our diagonalized method.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
35J25 Boundary value problems for second-order elliptic equations
65L70 Error bounds for numerical methods for ordinary differential equations

References:

[1] Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001) · Zbl 0994.65128
[2] Shen, J., Wang, L.L.: Some recent advances on spectral methods for unbounded domains. Commun. in Comp. Phys. 5, 195-241 (2009) · Zbl 1364.65265
[3] Nicholls, D., Shen, J.: A stable high-order method for two-dimensional bounded-obstacle scattering. SIAM J. Sci. Comput. 28, 1398-1419 (2006) · Zbl 1130.78007 · doi:10.1137/050632920
[4] Shen, J., Wang, L.L.: Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45, 1954-1978 (2007) · Zbl 1154.65082 · doi:10.1137/060665737
[5] Guo, B.Y.: Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. Math. Anal. Appl. 243, 373-408 (2000) · Zbl 0951.41006 · doi:10.1006/jmaa.1999.6677
[6] Boyd, J. P.: Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69, 112-142 (1987) · Zbl 0615.65090 · doi:10.1016/0021-9991(87)90158-6
[7] Boyd, J. P.: Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70, 63-88 (1987) · Zbl 0614.42013 · doi:10.1016/0021-9991(87)90002-7
[8] Christov, C. I.: A complete orthogonal system of functions in l2(−∞,∞) space. SIAM J. Appl. Math. 42, 1337-1344 (1982) · Zbl 0562.33009 · doi:10.1137/0142093
[9] Guo, B.Y., Shen, J., Wang, Z.Q.: A rational approximation and its applications to differential equations on the half line. J. Sci. Comput. 15, 117-147 (2000) · Zbl 0984.65104 · doi:10.1023/A:1007698525506
[10] Guo, B.Y., Shen, J., Wang, Z.Q.: Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. Internat. J. Numer. Methods Engrg. 53, 65-84 (2002) · Zbl 1001.65129 · doi:10.1002/nme.392
[11] Wang, Z.Q., Guo, B.Y.: Jacobi rational approximation and spectral method for differential equations of degenerate type. Math. Comp. 77, 883-907 (2008) · Zbl 1132.41315 · doi:10.1090/S0025-5718-07-02074-1
[12] Yi, Y.G., Guo, B.Y.: Generalized Jacobi rational spectral method on the half line. Adv. Comput. Math. 37, 1-37 (2012) · Zbl 1259.65156 · doi:10.1007/s10444-011-9193-4
[13] Coulaud, O., Funaro, D., Kavian, O.: Laugerre spectral approximation of elliptic problems in exterior domains. Comp. Meth. in Appl. Mech. and Eng. 80, 451-458 (1990) · Zbl 0734.73090 · doi:10.1016/0045-7825(90)90050-V
[14] Guo, B.Y., Shen, J.: Laguerre-galerkin method for nonlinear partial differential equations on a semi-infinite interval. Numer. Math. 86, 635-654 (2000) · Zbl 0969.65094 · doi:10.1007/PL00005413
[15] Guo, B.Y., Shen, J., Xu, C.L.: Generalized Laguerre approximation and its applications to exterior problems. J. Comp. Math. 23, 113-130 (2005) · Zbl 1073.65130
[16] Guo, B.Y., Sun, T., Zhang, C.: Jacobi and Laguerre quasi-orthogonal approximations and related interpolations. Math. Comp. 82, 413-441 (2013) · Zbl 1264.41008
[17] Guo, B.Y., Wang, L.L., Wang, Z.Q.: Generalized Laguerre interpolation and pseudospectral method for unbounded domain. SIAM J. Numer. Anal. 43, 2567-2589 (2006) · Zbl 1116.41002 · doi:10.1137/04061324X
[18] Guo, B.Y., Zhang, X.Y.: A new generalized Laguerre spectral approximation and its applications. J. Comp. Appl. Math. 181, 342-363 (2005) · Zbl 1072.65155 · doi:10.1016/j.cam.2004.12.008
[19] Guo, B.Y., Zhang, X.Y.: Spectral method for differential equations of degenerate type on unbounded domains by using generalized Laguerre functions. Appl. Numer. Math. 57, 455-471 (2007) · Zbl 1119.65097 · doi:10.1016/j.apnum.2006.07.032
[20] Iranzo, V., Falquès, A.: Some spectral approximations for differential equations in unbounded domains. Comput. Methods Appl. Mech. Engrg. 98, 105-126 (1992) · Zbl 0762.76081 · doi:10.1016/0045-7825(92)90171-F
[21] Ma, H.P., Guo, B.Y.: Composite Legendre-Laguerre pseudospectral approximation in unbounded domains. IMA J. Numer. Anal. 21, 587-602 (2001) · Zbl 0993.65106 · doi:10.1093/imanum/21.2.587
[22] Maday, Y., Pernaud-Thomas, B., Vanderen, H.: Reappraisal of Laguerre type spectral methods. Rech. Aérospat. 6, 353-375 (1985) · Zbl 0604.42026
[23] Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38, 1113-1133 (2000) · Zbl 0979.65105 · doi:10.1137/S0036142999362936
[24] Wang, Z.Q., Guo, B.Y., Wu, Y.N.: Pseudospectral method using generalized Laguerre functions for singular problems on unbounded domains. Discrete Contin. Dyn. Syst. Ser. B 11, 1019-1038 (2009) · Zbl 1169.65113 · doi:10.3934/dcdsb.2009.11.1019
[25] Wang, Z.Q., Xiang, X.M.: Generalized Laguerre approximations and spectral method for the Camassa-Holm equation. IMA J. Numer. Anal. 35, 1456-1482 (2015) · Zbl 1323.65112 · doi:10.1093/imanum/dru045
[26] Xu, C.L., Guo, B.Y.: Laguerre pseudospectral method for nonlinear partial differential equations. J. Comp. Math. 20, 413-428 (2002) · Zbl 1005.65115
[27] Zhuang, Q.Q., Shen, J., Xu, C.J.: A coupled Legendre-Laguerre spectral-element method for the Navier-Stokes equations in unbounded domains. J. Sci. Comput. 42, 1-22 (2010) · Zbl 1203.76090 · doi:10.1007/s10915-009-9313-1
[28] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin (2006) · Zbl 1093.76002
[29] Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, Analysis and Applications, Springer Series in Computational Mathematics, Vol. 41. Springer (2011) · Zbl 1227.65117
[30] Shen, J., Wang, L.L.: Fourierization of the Legendre-Galerkin method and a new space-time spectral method. Appl. Numer. Math. 57, 710-720 (2007) · Zbl 1118.65111 · doi:10.1016/j.apnum.2006.07.012
[31] Fernandez, L., Marcellan, F., Pérez, T., Piñar, M., Xu, Y.: Sobolev orthogonal polynomials on product domains. J. Comp. Anal. Appl. 284, 202-215 (2015) · Zbl 1312.33039 · doi:10.1016/j.cam.2014.09.015
[32] Marcellán, F., Xu, Y.: On Sobolev orthogonal polynomials. Expo. Math. 33, 308-352 (2015) · Zbl 1351.33011 · doi:10.1016/j.exmath.2014.10.002
[33] Bergh, J., Löfström, J.: Interpolation Spaces An Introduction. Spring-Verlag, Berlin (1976) · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[34] Szegö, G.: Orthogonal Polynomials, 4th edn, vol. 23. AMS (1975) · Zbl 0305.42011
[35] Pérez, T. E., Piñar, M. A.: On Sobolev orthogonality for the generalized Laguerre polynomials. J. Approx. Theory 86, 278-285 (1996) · Zbl 0864.33009 · doi:10.1006/jath.1996.0069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.