×

Modified Legendre rational spectral method for Burgers equation on the whole line. (English) Zbl 1538.65432

Summary: In this paper, we propose a spectral method for the Burgers equation using the modified Legendre rational functions, and prove its generalized stability and convergence. Numerical results demonstrate the efficiency of the new approach.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
41A30 Approximation by other special function classes
76M22 Spectral methods applied to problems in fluid mechanics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bouchaud J P and Mézard M, Velocity fluctuations in forced Burgers turbulence, Phys. Rev. E, 54(5) (1996), 5116-5121.
[2] Kida S, Asymptotic properties of Burgers turbulence, J. Fluid Mech., 93(2) (1979), 337-377. · Zbl 0436.76031
[3] Crighton D G and Scott J F, Asymptotic solutions of model equations in nonlinear acoustics, Phil. Trans. R. Soc. Lond. A, 292(1389) (1979), 101-134. · Zbl 0412.76054
[4] Brio M, Hunter J K, Mach reflection for the two-dimensional Burgers equation, Physica D, 60(1-4) (1992), 194-207. · Zbl 0778.35091
[5] Yepez J, Quantum lattice-gas model for the Burgers equation, J. Stat. Mech., 107(1) (2002), 203-224. · Zbl 1024.81007
[6] Musha T and Higuchi H, Traffic current fluctuation and the Burgers equation, Jpn. J. Appl. Phys., 17(5) (1978), 811-816.
[7] Nagatani T, Density waves in traffic flow, Phys. Rev. E, 61(4) (2000), 3564-3570.
[8] Bahadır A R, A fully implicit finite-difference scheme for two-dimensional Burgers’ equa-tions, Appl. Math. Comput., 137(1) (2003), 131-137. · Zbl 1027.65111
[9] Basdevant C, Deville M, Haldenwang P, Lacroix J M, Ouazzani J, Peyret R, Orlandi P and Patera A T, Spectral and finite difference solutions of the Burgers equation, Comput. Fluids, 14(1) (1986), 23-41. · Zbl 0612.76031
[10] Fletcher C A J, A comparison of finite element and finite difference solutions of the one-and two-dimensional Burgers’ equations, J. Comput. Phys., 51(1) (1983), 159-188. · Zbl 0525.65077
[11] Hassanien I A, Salama A A and Hosham H A, Fourth-order finite difference method for solving Burgers’ equation, Appl. Math. Comput., 170(2) (2005), 781-800. · Zbl 1084.65078
[12] Kutluay S, Bahadir A R andÖzdeş A, Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. Comput. Appl. Math., 103 (2) (1999), 251-261. · Zbl 0942.65094
[13] Arminjon P and Beauchamp C, A finite element method for Burgers’ equation in hydrody-namics, Int. J. Numer. Meth. Eng., 12(3) (1978), 415-428. · Zbl 0388.76041
[14] Arminjon P and Beauchamp C, Continuous and discontinuous finite element methods for Burgers’ equation, Comput. Meth. Appl. Mech. Eng., 25(1) (1981), 65-84. · Zbl 0443.73055
[15] Dogan A, A Galerkin finite element approach to Burgers’ equation, Appl. Math. Comput., 157(2) (2004), 331-346. · Zbl 1054.65103
[16] Shao L, Feng X L and He Y N, The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Model., 54(11-12) (2011), 2943-2954. · Zbl 1235.65115
[17] Bressan N and Quarteroni A, An implicit/explicit spectral method for Burgers’ equation, Calcolo, 23(3) (1986), 265-284. · Zbl 0691.65081
[18] E W N, Convergence of spectral methods for Burgers’ equation, SIAM J. Numer. Anal., 29 (6) (1992), 1520-1541. · Zbl 0764.65057
[19] Khater A H, Temsah R S and Hassan M M, A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., 222(2) (2008), 333-350. · Zbl 1153.65102
[20] Ma H P, Guo B Y, The Chebyshev spectral method for Burgers-like equations, J. Comput. Math., 6(1) (1988), 48-53. · Zbl 0641.65084
[21] Maday Y and Quarteroni A, Legendre and Chebyshev spectral approximations of Burgers’ equation, Numer. Math., 37(3) (1981), 321-332. · Zbl 0452.41007
[22] Maday Y and Quarteroni A, Approximation of Burgers’ equation by pseudo-spectral meth-ods, RAIRO. Anal. numér., 16(4) (1982), 375-404. · Zbl 0514.65084
[23] Wu H, Ma H P and Li H Y, Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation, SIAM J. Numer. Anal., 41(2) (2003), 659-672. · Zbl 1050.65083
[24] Canuto C, Hussaini M Y, Quarteroni A and Zang T A, Spectral Methods in Fluid Dynamics, Springer-Verlag Berlin Heidelberg, 1988. · Zbl 0658.76001
[25] Karniadakis G E and Sherwin S J, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd ed., Oxford University Press, 2005. · Zbl 1116.76002
[26] Guo B Y, Error estimation of Hermite spectral method for nonlinear partial differential equa-tions, Math. Comp., 68(227) (1999), 1067-1078. · Zbl 0918.65069
[27] Funaro D and Kavian O, Approximation of some diffusion evolution equations in unbound-ed domains by Hermite functions, Math. Comp., 57(196) (1991), 597-597. · Zbl 0764.35007
[28] Guo B Y, Shen J and Xu C L, Spectral and pseudospectral approximations using Hermite functions: application to the Dirac equation, Adv. Comput. Math., 19(1) (2003), 35-55. · Zbl 1032.33004
[29] Xiang X M and Wang Z Q, Generalized Hermite spectral method and its applications to problems in unbounded domains, SIAM J. Numer. Anal., 48(4) (2010), 1231-1253. · Zbl 1219.33010
[30] Guo B Y and Ma H P, Composite Legendre-Laguerre approximation in unbounded domains, J. Comput. Math., 19(1) (2001), 101-112. · Zbl 0980.65135
[31] Guo B Y and Wang T J, Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an infinite channel, Math. Comp., 78(265) (2009), 129-129. · Zbl 1198.65200
[32] Boyd J P, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69(1) (1987), 112-142. · Zbl 0615.65090
[33] Christov C I, A complete orthonormal system of functions in L 2 (−∞,∞) space, SIAM J. Appl. Math., 42(6) (1982), 1337-1344. · Zbl 0562.33009
[34] Boyd J P, Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys., 70(1) (1987), 63-88. · Zbl 0614.42013
[35] Guo B Y, Shen J and Wang Z Q, Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval, Int. J. Numer. Meth. Eng., 53(1) (2002), 65-84. · Zbl 1001.65129
[36] Guo B Y and Shen J, On spectral approximations using modified Legendre rational func-tions: application to the Korteweg-de Vries equation on the half line, Indiana U. Math. J., 50 (2001), 181-204. · Zbl 0992.65111
[37] Guo B Y and Wang Z Q, Legendre rational approximation on the whole line, Sci. China Ser. A Math., 47(7) (2004), 155. · Zbl 1084.41006
[38] Wang Z Q and Guo B Y, Modified Legendre rational spectral method for the whole line, J. Comput. Math., 22(3) (2004), 457-474. · Zbl 1071.65158
[39] Shen J, Tang T and Wang L L, Spectral Methods: Algorithms, Analysis and Applications, Spinger-Verlag Berlin Heidelberg, 2011. · Zbl 1227.65117
[40] Anguelov R, Djoko J K and Lubuma J M S, Energy properties preserving schemes for Burg-ers’ equation, Numer. Methods Partial Differ. Equ., 24(1) (2008), 41-59. · Zbl 1144.65056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.