×

Aircraft planar trajectories in crosswind navigation: some hypergeometric solutions. (English) Zbl 1421.76027

Summary: We study the planar motion of a self-propelled object against a withstanding flow, such as wind or sea current, whose speed is capable of perturbing the trajectory of the object, heading it off its path. Seven cases are dealt with, corresponding to fairly general wind types and all leading to nonlinear ordinary differential equations for the object motion. The first two cases concern motions described in Cartesian coordinates. They are followed by motions under a cyclonic wind, analysed in a polar reference frame; the wind is modelled as a logarithmic or hyperbolic spiral and closed-form solutions are obtained by means of the Gauss hypergeometric function and the Lerch transcendent. Further wind instances, treated in a Cartesian or in a polar reference system, require some special functions, such as the Lambert function, while finding the motion time law leads to a trinomial equation, in the most interesting situation of a mobile object that is faster than the wind. In the last case of a horizontal hyperbolic wind, time law and trajectory are computed in a polar reference frame by means of the Lambert function.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
34A34 Nonlinear ordinary differential equations and systems
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.)
Full Text: DOI

References:

[1] Morley, F. V., Am. Math. Mon., 28, 54, (1921) · JFM 48.0782.05 · doi:10.1080/00029890.1921.11986002
[2] Barton, J. C.; Eliezer, C. J., J. Aust. Math. Soc., 41, 358, (2000) · Zbl 0947.34055 · doi:10.1017/S0334270000011292
[3] Battaner, E., Eur. J. Phys., 1, 175, (1980) · doi:10.1088/0143-0807/1/3/012
[4] Cummings, A., Eur. J. Phys., 18, 176, (1997) · doi:10.1088/0143-0807/18/3/008
[5] Bernardo, R. C.; Esguerra, J. C.; Vallejos, J. D.; Canda, J. R., Eur. J. Phys., 36, (2015) · doi:10.1088/0143-0807/36/2/025016
[6] Klamkin, M.; Newman, D., Am. Math. Mon., 76, 16, (1969) · Zbl 0169.13602 · doi:10.1080/00029890.1969.12000120
[7] Klamkin, M.; Newman, D., Am. Math. Mon., 76, 1013, (1969) · Zbl 0188.17504 · doi:10.1080/00029890.1969.12000394
[8] Williams, L., Am. Math. Mon., 78, 1122, (1971) · doi:10.1080/00029890.1971.11992958
[9] Corless, R. M.; Gonnet, G. H.; Hare, D. E G.; Jeffrey, D. J.; Knuth, D. E., Adv. Comput. Math., 5, 329, (1996) · Zbl 0863.65008 · doi:10.1007/BF02124750
[10] Hamilton, W. R., Proc. R. Ir. Acad., 3, 344, (1847)
[11] Butikov, E., Eur. J. Phys., 21, 297, (2000) · Zbl 1079.70519 · doi:10.1088/0143-0807/21/4/303
[12] Apostolatos, T., Am. J. Phys., 71, 261, (2003) · doi:10.1119/1.1527948
[13] Gradshteyn, I. S.; Ryzhik, I. M.; Jeffrey, A.; Zwillinger, D., Table of Integrals, Series, and Products, (2007), London: Academic, London · Zbl 1208.65001
[14] Slater, L. J., Generalized Hypergeometric Functions, (1966), Cambridge: Cambridge University Press, Cambridge · Zbl 0135.28101
[15] Davies, H., Introduction to Nonlinear Differential and Integral Equations, vol 1, (1962), New York: Dover, New York · Zbl 0106.28904
[16] Spaletta, G.; Ritelli, D.; Mingari-Scarpello, G., Hypergeometric solution of the trinomial equation, (2018)
[17] Sofroniou, M.; Spaletta, G., Electron. Notes Theor. Comput. Sci., 7, 1, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.