×

On the use of Hermite functions for the Vlasov-Poisson system. (English) Zbl 1484.65247

Sherwin, Spencer J. (ed.) et al., Spectral and high order methods for partial differential equations, ICOSAHOM 2018. Selected papers from the ICOSAHOM conference, London, UK, July 9–13, 2018. Cham: Springer. Lect. Notes Comput. Sci. Eng. 134, 143-153 (2020).
Summary: We apply a second-order semi-Lagrangian spectral method for the Vlasov-Poisson system, by implementing Hermite functions in the approximation of the distribution function with respect to the velocity variable. Numerical tests are performed on a standard benchmark problem, namely the two-stream instability test case. The approach uses two independent sets of Hermite functions, based on Gaussian weights symmetrically placed with respect to the zero velocity level. An experimental analysis is conducted to detect a reasonable location of the two weights in order to improve the approximation properties.
For the entire collection see [Zbl 1462.65006].

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
35Q83 Vlasov equations
35Q35 PDEs in connection with fluid mechanics

References:

[1] Bittencourt, JA, Fundamentals of Plasma Physics (2004), New York: Springer, New York · Zbl 1084.76001 · doi:10.1007/978-1-4757-4030-1
[2] Boyd, JP, The rate of convergence of Hermite function series, Math. Comput., 35, 1309-1316 (1980) · Zbl 0459.40005 · doi:10.1090/S0025-5718-1980-0583508-3
[3] Boyd, JP, Asymptotic coefficients of Hermite function series, J. Comput. Phys., 54, 382-410 (1984) · Zbl 0551.65006 · doi:10.1016/0021-9991(84)90124-4
[4] Camporeale, E., On the velocity space discretization for the Vlasov-Poisson system: comparison between implicit Hermite spectral and Particle-in-Cell methods, Comput. Phys. Commun., 198, 47-58 (2016) · Zbl 1344.35147 · doi:10.1016/j.cpc.2015.09.002
[5] Cheng, CZ; Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 3, 330-351 (1976) · doi:10.1016/0021-9991(76)90053-X
[6] Crouseilles, N.; Respaud, T.; Sonnendrücker, E., A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, Comput. Phys. Commun., 180, 10, 1730-1745 (2009) · Zbl 1197.82012 · doi:10.1016/j.cpc.2009.04.024
[7] Delzanno, GL, Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form, J. Comput. Phys., 301, 338-356 (2015) · Zbl 1349.76568 · doi:10.1016/j.jcp.2015.07.028
[8] Fatone, D.; Funaro, L.; Manzini, G., Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system, J. Comput. Phys., 384, 349-375 (2019) · Zbl 1451.65155 · doi:10.1016/j.jcp.2019.01.020
[9] Fatone, D.; Funaro, L.; Manzini, G., A semi-Lagrangian spectral method for the Vlasov-Poisson system based on Fourier, Legendre and Hermite polynomials. Commun. Appl. Math. Comput., 1, 333-360 (2019) · Zbl 1449.65272 · doi:10.1007/s42967-019-00027-8
[10] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 4, 331-407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[11] Holloway, JP, Spectral velocity discretizations for the Vlasov-Maxwell equations, Transp. Theory Stat. Phys., 25, 1, 1-32 (1996) · Zbl 0864.76101 · doi:10.1080/00411459608204828
[12] Ma, H.; Sun, W.; Tang, T., Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains, SIAM J. Numer. Anal., 43, 58-75 (2005) · Zbl 1087.65097 · doi:10.1137/S0036142903421278
[13] Manzini, G., A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system, J. Comput. Phys., 317, 82-107 (2016) · Zbl 1349.76572 · doi:10.1016/j.jcp.2016.03.069
[14] Manzini, G.; Funaro, D.; Delzanno, GL, Convergence of spectral discretizations of the Vlasov-Poisson system, SIAM J. Numer. Anal., 55, 5, 2312-2335 (2017) · Zbl 1375.65118 · doi:10.1137/16M1076848
[15] Qiu, J-M; Christlieb, A., A conservative high order semi-Lagrangian WENO method for the Vlasov equation, J. Comput. Phys., 229, 4, 1130-1149 (2010) · Zbl 1188.82069 · doi:10.1016/j.jcp.2009.10.016
[16] Qiu, J-M; Russo, G., A high order multidimensional characteristic tracing strategy for the Vlasov-Poisson system, J. Sci. Comput., 71, 414-434 (2017) · Zbl 06849363 · doi:10.1007/s10915-016-0305-7
[17] Schumer, JW; Holloway, JP, Vlasov simulations using velocity-scaled Hermite representations, J. Comput. Phys., 144, 2, 626-661 (1998) · Zbl 0936.76061 · doi:10.1006/jcph.1998.5925
[18] Sonnendrücker, E., The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149, 2, 201-220 (1999) · Zbl 0934.76073 · doi:10.1006/jcph.1998.6148
[19] Tang, T., The Hermite spectral method for Gaussian-type functions, SIAM J. Sci. Comput., 14, 3, 594-606 (1993) · Zbl 0782.65110 · doi:10.1137/0914038
[20] Vencels, J., Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments, Proc. Comput. Sci., 51, 1148-1157 (2015) · doi:10.1016/j.procs.2015.05.284
[21] Vencels, J., SpectralPlasmaSolver: a spectral code for multiscale simulations of collisionless, magnetized plasmas, J. Phys. Conf. Series, 719, 1 (2016) · doi:10.1088/1742-6596/719/1/012022
[22] Xiang, X-M; Wang, Z-Q, Generalized Hermite approximations and spectral method for partial differential equations in multiple dimensions, J. Sci. Comput., 57, 229-253 (2013) · Zbl 1282.65161 · doi:10.1007/s10915-013-9703-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.