×

A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. (English) Zbl 1195.76269

Summary: The aim of this paper is to describe a simple Eulerian interface-capturing approach for the efficient numerical resolution of a hybrid barotropic and non-barotropic two-fluid flow problem in more than one space dimension. We use the compressible Euler equations as a model system with the thermodynamic property of each of the barotropic and non-barotropic fluid components characterized by the Tait and Noble-Abel equations of state, respectively. The algorithm is based on a volume fraction formulation of the equations together with an extended equation of state that is devised to give an approximate treatment for the mixture of more than one fluid component within a grid cell. A standard high-resolution wave propagation method is employed to solve the proposed two-fluid model with the dimensional-splitting technique incorporated in the method for multidimensional problems. Several numerical results are presented in one and two space dimensions that show the feasibility of the algorithm as applied to a reasonable class of practical problems without the occurrence of any spurious oscillation in the pressure near the smeared material interfaces. This includes, in particular, solutions for a study on the variation of the jet velocity with the incident shock pressure arising from the collapse of an air cavity in water under a shock wave.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics

Software:

HLLE; HE-E1GODF

References:

[1] Abgrall R. (1996). How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125: 150–160 · Zbl 0847.76060 · doi:10.1006/jcph.1996.0085
[2] Abgrall R., Nkonga B., Saurel R. (2003). Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput. Fluids 32: 571–605 · Zbl 1084.76543 · doi:10.1016/S0045-7930(02)00012-9
[3] Allaire G., Clerc S., Kokh S. (2002). A five-equation model for the simulation of interface between compressible fluids. J. Comput. Phys. 181: 577–616 · Zbl 1169.76407 · doi:10.1006/jcph.2002.7143
[4] Bagabir A., Drikakis D. (2001). Mach number effects on shock– bubble interaction. Shock Waves 11: 209–218 · Zbl 0996.76038 · doi:10.1007/PL00004076
[5] Ball G.J., Howell B.P., Leighton T.G., Schofield M.J. (2000). Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation. Shock Waves 10: 265–276 · Zbl 0980.76090 · doi:10.1007/s001930000060
[6] Batten P., Clarke N., Lambert C., Causon D. (1997). On the choice of wave speeds for the HLLC Riemann solvers. SIAM J. Sci. Comput. 18: 1553–1570 · Zbl 0992.65088 · doi:10.1137/S1064827593260140
[7] Bourne N.K., Field J.E. (1992). Shock-induced collapse of single cavities in liquid. J. Fluid Mech. 244: 225–240 · doi:10.1017/S0022112092003045
[8] Dear J.P., Field J.E. (1988). A study of the collapse of arrays of cavities. J. Fluid Mech. 190: 409–425 · doi:10.1017/S0022112088001387
[9] Fedkiw R.P., Aslam T., Merriman B., Osher S. (1999). A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152: 457–492 · Zbl 0957.76052 · doi:10.1006/jcph.1999.6236
[10] Fermi E. (1956). Thermodynamics. Dover, New York · Zbl 1085.01518
[11] Godlewski, E., Raviart, P.A.: Numerical Approximation of hyperbolic systems of conservation laws. Applied Mathematical Science. Springer, 118 Berlin Heldelverg New York (1996) · Zbl 0860.65075
[12] Haas J.F., Sturtevant B. (1987). Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181: 41–76 · doi:10.1017/S0022112087002003
[13] Harten A., Lax P.D., van Leer B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25: 35–61 · Zbl 0565.65051 · doi:10.1137/1025002
[14] Karni S. (1994). Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112: 31–43 · Zbl 0811.76044 · doi:10.1006/jcph.1994.1080
[15] Koren B., Lewis M.R., van Brummelen E.H., van Leer B. (2002). Riemann-problem and level-set approaches for homentropic two-fluid flow computations. J. Comput. Phys. 185: 654–674 · Zbl 1178.76281 · doi:10.1006/jcph.2002.7150
[16] Langseth J.O., LeVeque R.J. (2000). A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165: 126–166 · Zbl 0967.65095 · doi:10.1006/jcph.2000.6606
[17] LeVeque R.J. (1988). High resolution finite volume methods on arbitrary grids via wave propagation. J. Comput. Phys. 78: 36–63 · Zbl 0649.65050 · doi:10.1016/0021-9991(88)90036-8
[18] LeVeque R.J. (1997). Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131: 327–353 · Zbl 0872.76075 · doi:10.1006/jcph.1996.5603
[19] LeVeque R.J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge · Zbl 1010.65040
[20] Lide D.R. (1996). Handbook of Chemistry and Physics. 76th edn. CRC Press, Boca Raton
[21] Luo H., Baum J.D., Löhner R. (2004). On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194: 304–328 · Zbl 1136.76401 · doi:10.1016/j.jcp.2003.09.026
[22] Marquina A., Mulet P. (2003). A flux-split algorithm applied to conservative models for multicomponent compressible flows. J. Comput. Phys. 185: 120–138 · Zbl 1064.76078 · doi:10.1016/S0021-9991(02)00050-5
[23] Marsh S.P. (1980). LASL Shock Hugoniot Data. University of California Press, Berkeley
[24] Massoni, J., Saurel, R., Nkonga, B., Abgrall, R.: Proposition de méthodes et modèles eulériens pour les problèms à interfaces entre fluides compressibles en présence de transfert de chaleur(in French). Int. J. Heat Mass Transfer 45, 1287–1307 (2002) · Zbl 1121.76378
[25] Murnaghan F.D. (1951). Finite Deformation of an Elastic Solid. Wiley, New York · Zbl 0045.26504
[26] Murrone A., Guillard H. (2004). A five reduced equation model for compressible two-phase flow problems. J. Comput. Phys. 202: 664–698 · Zbl 1061.76083
[27] Nagoya, H., Obara, T., Takayama, K.: Underwater shock wave propagation and focusing in inhomogeneous media. In: Brun, R., et al. (eds.) Proceedings of 19th International Symposium on Shock Waves, Marseille. pp. 439–444 Springer Berlin, Heidelverg New York (1995)
[28] Quirk J.J., Karni S. (1996). On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318: 129–163 · Zbl 0877.76046 · doi:10.1017/S0022112096007069
[29] Roe, P.L.: Fluctuations and signals–A framework for numerical evolution problems. In: Morton, K.W., et al. (eds.) Numerical Methods for Fluid Dynamics, pp. 219–257 Academic New York, pp. 219–257 (1982) · Zbl 0569.76072
[30] Roe, P.L.: Upwind schemes using various formulations of the Euler equations. In: Angrand, F., et al. (eds.) Numerical Methods for the Euler Equations of Fluid Dynamics, pp. 14–31. SIAM, Philadelphia (1985) · Zbl 0609.76075
[31] Saurel R., Abgrall R. (1999). A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21: 1115–1145 · Zbl 0957.76057 · doi:10.1137/S1064827597323749
[32] Shyue K.M. (1998). An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142: 208–242 · Zbl 0934.76062 · doi:10.1006/jcph.1998.5930
[33] Shyue K.M. (1999). A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys. 156: 43–88 · Zbl 0957.76039 · doi:10.1006/jcph.1999.6349
[34] Shyue, K.M.: A volume-of-fluid type algorithm for compressible two-phase flows. In: Fey, M., et al. (eds.) Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser-Verlag, International. Series of Numerical Mathematics, vol. 130, pp. 895–904. Birkhäuser, Germany (1999) · Zbl 0937.76064
[35] Shyue K.M. (2001). A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state. J. Comput. Phys. 171: 678–707 · Zbl 1047.76573 · doi:10.1006/jcph.2001.6801
[36] Shyue K.M. (2004). A fluid-mixture type algorithm for barotropic two-fluid flow problems. J. Comput. Phys. 200: 718–748 · Zbl 1115.76344 · doi:10.1016/j.jcp.2004.05.003
[37] Smith R.W. (1999). AUSM (ALE): a geometrically conservative arbitrary Lagrangian–Eulerian flux splitting scheme. J. Comput. Phys. 150: 268–286 · Zbl 0936.76046 · doi:10.1006/jcph.1998.6180
[38] Strang G. (1968). On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5: 506–517 · Zbl 0184.38503 · doi:10.1137/0705041
[39] Sweby P.K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer Anal. 21: 995–1011 · Zbl 0565.65048 · doi:10.1137/0721062
[40] Toro E.F. (1989). A fast Riemann solver with constant covolume applied to the random choice method. Int. J. Numer. Methods in Fluids 9: 1145–1164 · Zbl 0673.76090 · doi:10.1002/fld.1650090908
[41] Toro E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd Edn. Springer-Berlin Heidelberg Nwe York (1999) · Zbl 0923.76004
[42] Toro E.F., Spruce M., Speares W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4: 25–34 · Zbl 0811.76053
[43] van Brummelen E.H., Koren B. (2003). A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows. J. Comput. Phys. 185: 289–308 · Zbl 1047.76063 · doi:10.1016/S0021-9991(02)00058-X
[44] Wardlaw A.B. Jr., Mair H.U. (1998). Spherical solutions of an explosion bubble. Shock Vibr. 5: 89–102
[45] Yamada, K., Nagoya, H., Takayama, K.: Shock wave reflection and refraction over a two-fluid interface. In: Brun, R., et al. (eds.) Proceedings of 19th International Symphosium on Shock Waves, Marseille Springer, Berlin Aeidelberg New York Berlin, pp. 299–304 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.