×

Cubic systems and Abel equations. (English) Zbl 0911.34020

Consider autonomous differential systems of the type \[ dx/dt = \lambda x + y + P_2 (x,y)+ P_3 (x,y), \qquad dy/dt =-x+ \lambda y + Q_2 (x,y)+ Q_3 (x,y),\tag \(*\) \] where \(P_i (x,y)\) and \(Q_i (x,y)\), \(i=2,3\), are homogeneous polynomials of degree \(i\). In polar coordinates \(r,\Theta\), \((*)\) is equivalent to \((**)\) \(dr/d\Theta = R(r,\Theta)\).
The authors consider systems \((*)\) such that there is a transformation \(\rho (\Theta) = u(r)(-1+B(\Theta) u(r))^{-1}\) with \(u(0)=0\) and \(B(\Theta)\) of period \(2 \pi\), so that \((**)\) is equivalent to an equation of Abel’s form \[ d \rho / d\Theta = \alpha_1 (\Theta) \rho + \alpha_2 (\Theta) \rho^2 + \dots + \alpha_N (0) \rho^N,\tag \(***\) \] where \(\alpha_\kappa (\Theta)\) are of period \(2\pi\). For these systems they derive necessary and sufficient conditions such that for \(\lambda =0\), \(x=y=0\) is a center, and especially an isochronous center. Moreover, the authors prove that up to five limit cycles can bifurcate from the fine focus at the origin.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
Full Text: DOI

References:

[1] Alwash, M. A.M.; Lloyd, N. G., Non-autonomous equations related to polynomial two-dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A, 105, 129-152 (1987) · Zbl 0618.34026
[2] Alwash, M. A.M.; Lloyd, N. G., Periodic solutions of a quartic non-autonomous equation, Nonlinear Anal., 11, 809-820 (1987) · Zbl 0636.34032
[3] M. Briskin, J. P. Françoise, Y. Yomdin, Centre conditions, compositions of polynomials and moments on algebraic curves, 1997; M. Briskin, J. P. Françoise, Y. Yomdin, Centre conditions, compositions of polynomials and moments on algebraic curves, 1997
[4] Blows, T. R.; Lloyd, N. G., The number of limit cycles of certain polynomial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 98, 215-239 (1984) · Zbl 0603.34020
[5] Christopher, C. J.; Devlin, J., Isochronous centres in planar polynomial systems, SIAM J. Math. Anal., 28, 162-177 (1997) · Zbl 0881.34057
[6] Christopher, C. J.; Lloyd, N. G.; Pearson, J. M., On Cherka’s method for centre conditions, Nonlinear World, 2, 459-469 (1995) · Zbl 0833.34023
[7] Devlin, J., Word problems related to the periodic solutions of non-autonomous systems, Math. Proc. Cambridge Philos. Soc., 108, 127-151 (1990) · Zbl 0726.34026
[8] J. Devlin, Cyclicity of critical points and the inverse Poincaré map, University of Wales, Aberystwyth, 1997; J. Devlin, Cyclicity of critical points and the inverse Poincaré map, University of Wales, Aberystwyth, 1997
[9] Gasull, A.; Prohens, R., Quadratic and cubic systems with degenerate infinity, J. Math. Anal. Appl., 198, 25-34 (1996) · Zbl 0851.34028
[10] Lloyd, N. G., Small amplitude limit cycles of polynomial differential equations, Ordinary Differential Equations and Operators. Ordinary Differential Equations and Operators, Lecture Notes in Math., 1032 (1982), Springer-Verlag: Springer-Verlag Berlin/New York, p. 357-364 · Zbl 0527.34035
[11] Lloyd, N. G.; Christopher, C. J.; Devlin, J.; Pearson, J. M.; Yasmin, N., Quadratic-like cubic systems, Differential Equations Dynam. Systems, 5, 329-345 (1997) · Zbl 0898.34026
[12] Lloyd, N. G.; Pearson, J. M., REDUCE and the bifurcation of limit cycles, J. Symbolic Comput., 9, 215-224 (1990) · Zbl 0702.68072
[13] Lloyd, N. G.; Pearson, J. M., Five limit cycles for a simple cubic system, Publ. Math., 41, 199-208 (1997) · Zbl 0885.34029
[14] Lloyd, N. G.; Pearson, J. M.; Romanovsky, V. G., Computing integrability conditions for a cubic differential system, Comput. Math. Appl., 32, 99-107 (1996) · Zbl 0871.34003
[15] N. G. Lloyd, J. M. Pearson, V. A. Romanovsky, Centre conditions for cubic systems, University of Wales, Aberystwyth, 1997; N. G. Lloyd, J. M. Pearson, V. A. Romanovsky, Centre conditions for cubic systems, University of Wales, Aberystwyth, 1997
[16] Lloyd, N. G.; Pearson, J. M.; Saez, E.; Szanto, I., Limit cycles of a cubic Kolmogorov system, Appl. Math. Lett., 9, 15-18 (1996) · Zbl 0858.34023
[17] Pearson, J. M., Hilbert’s Sixteenth Problem: An Approach Using Computer Algebra (1992), University of Wales: University of Wales Aberystwyth
[18] Pearson, J. M.; Lloyd, N. G.; Christopher, C. J., Algorithmic derivation of centre conditions, SIAM Rev., 38, 619-636 (1996) · Zbl 0876.34033
[19] Pleshkan, I. I., A new method of investigating the isochronicity of a system of two differential equations, Differentisial’nye Uravneniya, 5, 796-802 (1968) · Zbl 0252.34034
[20] Pleshkan, I. I., Isochronicity conditions for systems of two differential equations, Differential ’nye Uravneniya, 4, 1991-1993 (1968) · Zbl 0176.05301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.