×

Nonlinear integral equations with potential-type kernels in the nonperiodic case. (English. Russian original) Zbl 1494.45006

J. Math. Sci., New York 263, No. 4, 463-474 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 170, 3-14 (2019).
Summary: We find conditions under which a generalized potential-type operator acts continuously from a Lebesgue space with a general weight to its dual space and possesses the positivity property. Based on these conditions, we prove the global existence and uniqueness theorems for various classes of nonlinear integral equations of convolution type in real weighted Lebesgue spaces using the method of monotonic (in the Browder-Minty sense) operators. Also we obtain estimates of the norms of solutions, which imply that the corresponding homogeneous equations have only a trivial solution.

MSC:

45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
45G10 Other nonlinear integral equations
47J05 Equations involving nonlinear operators (general)
Full Text: DOI

References:

[1] Askhabov, SN, Nonlinear Convolution-Type Equations (2009), Moscow: Fizmatlit, Moscow
[2] Askhabov, SN, Convolution-type equations with monotonic nonlinearities on a segment, Differ. Uravn., 51, 9, 1182-1188 (2015) · Zbl 1332.45004
[3] Askhabov, SN, Nonlinear convolution-type equations in Lebesgue spaces, Mat. Zametki, 97, 5, 643-654 (2015) · Zbl 1328.45008 · doi:10.4213/mzm10489
[4] S. N. Askhabov, “Positivity conditions for operators with difference kernels in reflexive spaces,” Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 149, 3-13 (2018).
[5] Askhabov, SN; Dzhabrailov, AL, Appoximate solutions of nonlinear convolution-type equations on a segment, Ufim. Mat. Zh., 5, 2, 3-11 (2013) · doi:10.13108/2013-5-2-3
[6] Brezis, H.; Browder, FE, Some new results about Hammerstein equations, Bull. Am. Math. Soc., 80, 567-572 (1974) · Zbl 0286.45007 · doi:10.1090/S0002-9904-1974-13500-7
[7] Brezis, H.; Browder, FE, Nonlinear integral equations and systems of Hammerstein type, Adv. Math., 18, 115-147 (1975) · Zbl 0318.45011 · doi:10.1016/0001-8708(75)90155-3
[8] Brunner, H., Volterra Integral Equations: An Introduction to Theory and Applications (2017), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1376.45002 · doi:10.1017/9781316162491
[9] Edwards, RE, Fourier Series. A Modern Introduction (1982), New York-Heidelberg- Berlin: Springer-Verlag, New York-Heidelberg- Berlin · Zbl 0599.42001 · doi:10.1007/978-1-4613-8156-3
[10] Gajewski, H.; Gröger, K.; Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (1974), Berlin: Akademie-Verlag, Berlin · Zbl 0289.47029
[11] Gahkov, FD; Chersky, YI, Convolution-Type Equations (1978), Moscow: Nauka, Moscow · Zbl 0458.45002
[12] G. Gripenberg, S. O. Londen, and O. Staffans, Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge-New York (1990). · Zbl 0695.45002
[13] Hardy, GH; Rogosinski, WW, Fourier Series (1956), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0074.05202
[14] Nakhushev, AM, Fractional Calculus and Its Applications (2003), Moscow: Fizmailit, Moscow · Zbl 1066.26005
[15] Vainberg, MM, Variational Method and the Method of Monotonic Operators in the Theory of Nonlinear Equations (1972), Moscow: Nauka, Moscow
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.