×

Approximate solution of Abel integral equation in Daubechies wavelet basis. (English) Zbl 1472.65166

Summary: This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the solution of a system of algebraic equations. The error analysis associated with the method is given. The method is illustrated with some examples and the present method works nicely for low resolution.

MSC:

65R20 Numerical methods for integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)

References:

[1] S. B. Healy, J. Haase, O. Lesne, “Abel transform inversion of radio occulation measurement made with a receiver inside the earth’s atmosphere”, Ann. Geophys., vol. 20, no. 8, pp. 1253- 1256, 2002.
[2] R. N. Bracewell, A. C. Riddle, “Inversion of Fan-Beam scans in radio astronomy”, Astrophysical Journal, vol. 150, pp. 427-434, 1967.
[3] Lj. M. Ignjatovic and A. A. Mihajlov, “The realization of Abel’s inversion in the case of discharge with undetermined radius”, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 72, no. 5, pp. 677-689, 2002.
[4] S. De, B. N. Mandal and A. Chakrabarti, “Water wave scattering by two submerged plane vertical barriers-Abel integral-equation approach”, J. Eng. Math., vol. 65, no. 1, pp. 75-87, 2009. · Zbl 1176.76016
[5] J. Fourier, Théorie Analytique de la chaleur, Firmin Didot, United Kingdom: Cambridge University Press, ISBN 978-1-108-00180-9, 2009. · JFM 15.0954.01
[6] A. Graps, “An introduction to wavelets”, IEEE Computing in Science and Engineering, vol. 2, no.2, pp. 50-61, 1995.
[7] A. Grossman and J. Morlet, “Decomposition of Hardy functions into square integrables wavelets of constant shape”, SIAM J. Math. Anal., vol. 15, no. 4, pp. 723-736, 1984. · Zbl 0578.42007
[8] P. G. Lamarie and Y. Meyer, “Ondelettes et bases hilbertiennes”, Rev. Mat. Iberoam., vol. 2, no. 1, pp. 1-18, 1986. · Zbl 0657.42028
[9] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., vol. 41, no.7, pp. 909-996, 1988. · Zbl 0644.42026
[10] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Philadelphia, PA: SIAM, 1992. · Zbl 0776.42018
[11] G. Beylkin, R. Coifman and V. Rokhlin, “Fast wavelet transforms and numerical algorithms I”, Comm. Pure Appl. Math, vol. 44, no. 2, pp. 141-183, 1991. · Zbl 0722.65022
[12] S. A. Yousefi, “Numerical solution of Abel’s integral equation by using Legendre wavelets”, Appl. Math. Comput., vol. 175, no.1, pp. 574-580, 2006. · Zbl 1088.65124
[13] N. Mandal, A. Chakrabarti and B. N. Mandal, “Solution of a system of generalized Abel integral equations using fractional calculus”, Appl. Math. Lett., vol.9, no. 5, pp. 1-4, 1996. · Zbl 0902.45004
[14] Y. Liu and L. Tao, “Mechanical quadrature methods and their extrapolation for solving first kind Abel integral equations”, J. Comput. Appl. Math, vol. 201, no.1, pp. 300-313, 2007. · Zbl 1113.65123
[15] H. Derili and S. Sohrabi, “Numerical solution of singular integral equations using orthogonal functions”, Math. Sci. (QJMS), vol. 3, pp. 261-272, 2008. · Zbl 1206.65259
[16] M. Alipour and D. Rostamy, “Bernstein polynomials for solving Abel’s integral equation”, J. Math. Comput. Sci., vol. 3, no. 4, pp. 403-412, 2011.
[17] A. Shahsavaram, “Haar Wavelet Method to Solve Volterra Integral Equations with Weakly Singular Kernel by Collocation Method”, Appl. Math. Sci., vol. 5, pp. 3201-3210, 2011. · Zbl 1248.65139
[18] J. Mouley, M. M. Panja and B. N. Mandal, “Numerical solution of an integral equation arising in the problem of cruciform crack using Daubechies scale function”, Math. Sci., vol. 14, no. 1, pp. 21-27, 2020. · Zbl 1452.65410
[19] M. M. Panja and B. N. Mandal, “Solution of second kind integral equation with Cauchy type kernel using Daubechies scale function”, J. Comput. Appl. Math., vol. 241, pp. 130-142, 2013. · Zbl 1258.65110
[20] L. J. Curtis, “Concept of the exponential law prior to 1900”, Amer. J. Phys., vol. 46, no. 9, pp. 896-906, 1978.
[21] B. M. Kessler, G. L. Payne, W. W. Polyzou, “Notes on Wavelets”, 2003. .
[22] M. M. Panja and B. N. Mandal, “Gauss-type quadrature rule with complex nodes and Weights for integrals involving Daubechies scale functions and wavelets”, J. Comput. Appl. Math., vol. 290, pp. 609-632, 2015. · Zbl 1327.65045
[23] E. M. Stein, R. Shakarchi, Functional Analysis: Introduction to Further topics in Analysis’, Princeton Lectures in Analysis, Princeton: Princeton University Press, ISBN-978-0-691-11387- 6, 2011. · Zbl 1235.46001
[24] A. Wang, “Lebesgue measure and L2 space”, Mathematics department, University of Chicago, 2011.
[25] M. M. Panja and B. N. Mandal, “Evaluation of singular integrals using Daubechies scale function”, Adv. Comput. Math. Appl., vol. 1, pp. 64-75, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.