×

Borel-Écalle resummation of a two-point function. (English) Zbl 1508.81941

Summary: We provide an overview of the tools and techniques of resurgence theory used in the Borel-Écalle resummation method, which we then apply to the massless Wess-Zumino model. Starting from already known results on the anomalous dimension of the Wess-Zumino model, we solve its renormalisation group equation for the two-point function in a space of formal series. We show that this solution is 1-Gevrey and that its Borel transform is resurgent. The Schwinger-Dyson equation of the model is then used to prove an asymptotic exponential bound for the Borel transformed two-point function on a star-shaped domain of a suitable ramified complex plane. This proves that the two-point function of the Wess-Zumino model is Borel-Écalle summable.

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81Q40 Bethe-Salpeter and other integral equations arising in quantum theory
30F99 Riemann surfaces
40G10 Abel, Borel and power series methods

References:

[1] Zhang, B., Dang, V.: Renormalization of Feynman amplitudes on manifolds by spectral zeta regularization and blow-ups. (2017). arXiv:1712.03490 · Zbl 1460.81061
[2] Pascalie, R.: A Solvable Tensor Field Theory (2019). arXiv:1903.02907 · Zbl 1433.81127
[3] Broadhurst, DJ; Kreimer, D., Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality, Nucl. Phys. B, 600, 403-422 (2001) · Zbl 1043.81049 · doi:10.1016/S0550-3213(01)00071-2
[4] Clavier, PJ, Analytic results for Schwinger-Dyson equations with a mass term, Lett. Math. Phys. (2015) · Zbl 1316.81043 · doi:10.1007/s11005-015-0762-1
[5] Bersini, J., Maiezza, A., Carlos Vasquez, J.: Resurgence of the renormalization group equation. Ann. Phys. 415. arXiv:1910.14507 · Zbl 1434.81071
[6] Bellon, MP; Clavier, PJ, A Schwinger-Dyson equation in the Borel plane: singularities of the solution, Lett. Math. Phys. (2015) · Zbl 1316.81042 · doi:10.1007/s11005-015-0761-2
[7] Bellon, MP; Clavier, PJ, Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale, Lett. Math. Phys., 108, 2, 391-412 (2016) · Zbl 1382.81102 · doi:10.1007/s11005-017-1016-1
[8] Écalle, J., Les fonctions résurgentes (1981), Orsay: Pub. Math, Orsay · Zbl 0499.30034
[9] Écalle, J., Les fonctions résurgentes (1981), Orsay: Pub. Math, Orsay · Zbl 0499.30034
[10] Écalle, J., Les fonctions résurgentes (1981), Orsay: Pub. Math, Orsay · Zbl 0499.30034
[11] Écalle, J.: Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Hermann (1992) · Zbl 1241.34003
[12] Menous, F.: Les bonnes moyennes uniformisantes et leurs applications a la resommation reelle. Ph.D. thesis, 1996. Thèse de doctorat dirigée par Écalle, Jean Sciences et techniques communes Paris 11. http://www.theses.fr/1996PA112392 (1996) · Zbl 0972.40001
[13] Menous, F., Les bonnes moyennes uniformisantes et une application à la resommation réelle, Annales de la Faculté des sciences de Toulouse: Mathématiques, 6e série, 8, 4, 579-628 (1999) · Zbl 0972.40001
[14] Vieillard-Baron, E.: From resurgent functions to real resummation through combinatorial Hopf algebras. Ph.D. thesis, 2014. Thèse de doctorat dirigée par Rolin, Jean-Philippe Mathématiques Dijon. http://www.theses.fr/2014DIJOS005 (2014)
[15] Aniceto, I.; Schiappa, R., Nonperturbative ambiguities and the reality of resurgent transseries, Commun. Math. Phys., 335, 183-245 (2013) · Zbl 1310.81127 · doi:10.1007/s00220-014-2165-z
[16] Schiappa, R.; Aniceto, I.; Başar, G., A primer on resurgent transseries and their asymptotics, Phys. Rep., 809, 02 (2018) · doi:10.1016/j.physrep.2019.02.003
[17] Dorigoni, D., An introduction to resurgence, trans-series and alien calculus, Ann. Phys. (2014) · Zbl 1425.81003 · doi:10.1016/j.aop.2019.167914
[18] Sauzin, D.: Nonlinear analysis with resurgent functions (2012). arXiv:1212.4477v4 · Zbl 1326.30036
[19] Bellon, MP; Clavier, PJ, Analyticity domain of a quantum field theory and accelero-summation, Lett. Math. Phys. (2019) · Zbl 1424.81012 · doi:10.1007/s11005-019-01172-0
[20] Sokal, AD, An improvement of Watson’s theorem on Borel summability, J. Math. Phys., 21, 2, 261-263 (1980) · Zbl 0441.40012 · doi:10.1063/1.524408
[21] Costin, O., On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J. (1998) · Zbl 0948.34068 · doi:10.1215/S0012-7094-98-09311-5
[22] Costin, O.: Exponential asymptotics, trans-series and generalized Borel summation for analytic nonlinear rank one systems of ODE’s. arXiv:math/0608414 · Zbl 0841.34005
[23] Menous, F.: The well-behaved catalan and brownian averages and their applications to real resummation. In: Proceedings of the Symposium on Planar Vector Fields (Lleida, 1996). Publ. Mat., vol. 41, pp. 209-222 1997 · Zbl 0883.40007
[24] Bouillot, O.: Invariants Analytiques des Difféomorphismes et MultiZêtas. Ph.D. thesis, Université Paris-Sud, vol. 11. http://tel.archives-ouvertes.fr/tel-00647909 (2011)
[25] Sauzin, D.: Introduction to 1-summability and resurgence (2014). arXiv:1405.0356v1
[26] Sauzin, D.; Kamimoto, S., Iterated convolutions and endless Riemann surfaces, Annali Scuola Normale Superiore - Classe di Scienze (2016) · Zbl 1467.30002 · doi:10.2422/2036-2145.201708008
[27] Viellard-Baron, E.: Écalle’s averages, Rota-Baxter algebras and the construction of moulds (2019). arXiv:1904.02417v1
[28] Borinsky, M.; Dunne, GV, Non-perturbative completion of Hopf-algebraic Dyson-Schwinger equations, Nucl. Phys. B, 957, 115096 (2020) · Zbl 1473.81123 · doi:10.1016/j.nuclphysb.2020.115096
[29] Écalle, J., Menous, F.: Well-behaved convolution averages and the non-accumulation theorem for limit-cycles. In: The Stokes Phenomenon and Hilbert’s 16th Problem. doi:10.1142/3031 · Zbl 0857.34009
[30] Clavier, P.J.: Analytic and Geometrical approches of non-perturbative quantum field theories. Ph.D. thesis (2015)
[31] Wess, J.; Zumino, B., Supergauge transformations in four dimensions, Nucl. Phys. B, 70, 39-50 (1974) · doi:10.1016/0550-3213(74)90355-1
[32] Zumino, B.; Wess, J., A lagrangian model invariant under supergauge transformations, Phys. Lett., 49B, 52-55 (1974)
[33] Costin, O., Asymptotics and Borel summability, Monographs and Surveys in Pure and Applied Mathematics, 9781420070316 (2008), Boca Raton: Chapman and Hall/CRC, Boca Raton
[34] Costin, O., Tanveer, S.: Nonlinear evolution PDEs in \(\mathbb{R}^+ \times \mathbb{C}^d\) existence and uniqueness of solutions, asymptotic and Borel summability properties. Ann. I. H. Poincaré AN 24 (2007) · Zbl 1236.35019
[35] Bellon, MP, An efficient method for the solution of Schwinger-Dyson equations for propagators, Lett. Math. Phys., 94, 77-86 (2010) · Zbl 1198.81147 · doi:10.1007/s11005-010-0415-3
[36] Bellon, MP; Clavier, PJ, Higher order corrections to the asymptotic perturbative solution of a Schwinger-Dyson equation, Lett. Math. Phys., 104, 1-22 (2014) · Zbl 1291.81274 · doi:10.1007/s11005-014-0686-1
[37] Bellon, MP; Clavier, PJ, Solving a Dyson-Schwinger equation around its first singularity in the Borel plane, Front. Phys. (2016) · doi:10.1007/s11467-016-0582-5
[38] Bellon, M.; Lozano, G.; Schaposnik, F., Higher loop renormalization of a supersymmetric field theory, Phys. Lett. B, 650, 293-297 (2007) · Zbl 1248.81131 · doi:10.1016/j.physletb.2007.05.024
[39] ’t Hooft, G., Can We Make Sense Out of “Quantum Chromodynamics”?, 943-982 (1979), Boston: Springer US, Boston · doi:10.1007/978-1-4684-0991-8_17
[40] Hörmander, L., An Introduction to Complex Analysis in Several Complex Variables (1966), Amsterdam: Elsevier, Amsterdam · Zbl 0138.06203
[41] Bellon, MP, Approximate differential equations for renormalization group functions in models free of vertex divergencies, Nucl. Phys. B, 826, 3, 522-531 (2010) · Zbl 1203.81123 · doi:10.1016/j.nuclphysb.2009.11.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.