×

On orthogonal projections of Nöbeling spaces. (English. Russian original) Zbl 1454.54025

Izv. Math. 84, No. 4, 627-658 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 4, 5-40 (2020).
The following characterization of trivial \(\ell_2\)-bundles is well-known: a map \(f: X \to Y\) is homeomorphic to the trivial \(\ell_2\)-bundle \(\pi_Y: Y\times \ell_2 \to Y\) for a Polish space (a separable completely metrizable space) \(Y\) that is an ANE if and only if for \(k=\infty\), \(f\) is a surjective \(k\)-soft map of a Polish \(k\)-dimensional space \(X\) possessing the fibrewise \(k\)-universal property with respect to Polish spaces. This paper is considered as a preparation for a future solution to the existence problem of a finite-dimensional counterpart of this \(\pi_Y\): does there exist a map which is uniquely characterized by the above condition with \(k\) finite?
The main theorem states: Let \(\sigma = \{T_\beta \mid \beta\in B\}\), where \(|B| \geq k+1\), be a finite family of pairwise intersecting planes in \({\mathbb R}^m\), where \(m > (2k+1) + (k+1)^2\), of codimension \(k+1\) which are in general position. If a countable family \(\Sigma^\prime\) of planes of codimension \(k+1\) in \({\mathbb R}^m\) contains the translation \(\Sigma=\sigma+{\mathbb Q}^m\), then there exists a dense \(G_\delta\)-subset \({\mathcal L}\) of the Grassmann manifold \({\mathrm {Gr}} (2k+1, m)\) (the set of all \((2k+1)\)-dimensional planes in \({\mathbb R}^m\)) such that for every \(L \in {\mathcal L}\), the restriction \(p|N_{\Sigma^\prime}: N_{\Sigma^\prime} = {\mathbb R}^m\setminus \cup\Sigma^\prime \to L\) of the orthogonal projection \(p: {\mathbb R}^m \to L\) is \(k\)-soft and possesses the strong fibrewise \(k\)-universal property with respect to Polish spaces.
If \({\mathcal N} \subset L\) is a standard \(k\)-dimensional Nöbeling space and \(\dim N_{\Sigma^\prime} = k\) (this condition is satisfied if \(\sigma\) contains all the coordinate planes of codimension \(k+1\)), then \({\mathcal N}^\bullet = p^{-1}({\mathcal N}) \cap N_{\Sigma^\prime} \subset {\mathbb R}^m\) is a standard \(k\)-dimensional Nöbeling space, and the main theorem implies that the map \(p|{\mathcal N}^\bullet: {\mathcal N}^\bullet \to {\mathcal N}\), which is called a geometric Chigogidze resolution in this paper, is \(k\)-soft and possesses the strong fibrewise \(k\)-universal property with respect to Polish spaces.

MSC:

54F65 Topological characterizations of particular spaces
57N20 Topology of infinite-dimensional manifolds
54C35 Function spaces in general topology
55P15 Classification of homotopy type
Full Text: DOI

References:

[1] Toruńczyk H. 1980 On CE-images of the Hilbert cube and characterization of \(Q\)-manifolds Fund. Math.106 31-40 · Zbl 0346.57004 · doi:10.4064/fm-106-1-31-40
[2] Toruńczyk H. 1981 Characterizing Hilbert space topology Fund. Math.111 247-262 · Zbl 0468.57015 · doi:10.4064/fm-111-3-247-262
[3] Mogilski J. 1984 Characterizing the topology of infinite-dimensional \(\sigma \)-compact manifolds Proc. Amer. Math. Soc.92 111-118 · Zbl 0577.57005 · doi:10.2307/2045165
[4] Toruńczyk H. and West J. 1989 Mem. Amer. Math. Soc.80 (Providence, RI: Amer. Math. Soc.) · Zbl 0689.57013 · doi:10.1090/memo/0406
[5] Bestvina M. 1988 Mem. Amer. Math. Soc.71 (Providence, RI: Amer. Math. Soc.) · Zbl 0645.54029 · doi:10.1090/memo/0380
[6] Ageev S. 2001 Axiomatic method of partitions in the theory of Menger and Nöbeling spaces
[7] Ageev S. M. 2007 Axiomatic method of partitions in the theory of Nöbeling spaces. I. Improvement of partition connectivity Mat. Sb.198 3-50 · Zbl 1147.54019 · doi:10.4213/sm1476
[8] Ageev S. M. 2007 Axiomatic method of partitions in the theory of Nöbeling spaces. II. Unknotting theorem Mat. Sb.198 3-32 · Zbl 1153.54018 · doi:10.4213/sm1477
[9] Ageev S. M. 2007 Axiomatic method of partitions in the theory of Nöbeling spaces. III. Consistency of the axiom system Mat. Sb.198 3-30 · Zbl 1148.54018 · doi:10.4213/sm1478
[10] Nagórko A. 2013 Mem. Amer. Math. Soc.223 (Providence, RI: Amer. Math. Soc.) · Zbl 1419.55003 · doi:10.1090/S0065-9266-2012-00643-5
[11] Levin M. 2006 Characterizing Nobeling spaces arXiv:math/0602361
[12] Chigogidze A. and Zarichnyi M. M. 2003 Universal Nöbeling spaces and pseudo-boundaries of Euclidean spaces Mat. Stud.19 193-200 · Zbl 1023.54028
[13] Dranishnikov A. N. 1984 Absolute extensors in dimension \(n\) and dimension-raising \(n\)-soft maps Uspekhi Mat. Nauk39 55-95 · Zbl 0572.54012 · doi:10.1070/RM1984v039n05ABEH004088
[14] Chigogidze A. Ch. \(1989 n\)-soft mappings of \(n\)-dimensional spaces Mat. Zametki46 88-95 · Zbl 0741.54008 · doi:10.1007/BF01159107
[15] Fedorchuk V. V. and Chigogidze A. Ch. 1992 Absolute retracts and infinite-dimensional manifolds (Moscow: Nauka) · Zbl 0762.54017
[16] Ageev S. M., Gruzdev G. N. and Silaeva Z. N. 2006 Characterization of the \(0\)-dimensional Chigogidze resolution Vestn. Belorus. Gos. Univ. Ser. 1. Fiz. Mat. Inform. 100-103 · Zbl 1137.54309
[17] Shchepin E. V. and Brodskii N. B. 1996 Selections of filtered multivalued mappings Proc. Steklov Inst. Math.212 220-240 · Zbl 0898.54020
[18] Engelking R. 1977 Monogr. Mat.60 (Warsaw: PWN-Polish Scientific Publishers) · Zbl 0373.54002
[19] Borsuk K. 1967 Monogr. Mat.44 (Warsaw: PWN-Polish Scientific Publishers) · Zbl 0153.52905
[20] Hu Sze-tsen 1965 Theory of retracts (Detroit: Wayne State Univ. Press) · Zbl 0029.32203
[21] Bowers P. L. 1985 General position properties satisfied by finite products of dendrites Trans. Amer. Math. Soc.288 739-753 · Zbl 0568.54028 · doi:10.1090/S0002-9947-1985-0776401-5
[22] Bestvina M. and Mogilski J. 1986 Characterizing certain incomplete infinite-dimensional absolute retracts Michigan Math. J.33 291-313 · Zbl 0629.54011 · doi:10.1307/mmj/1029003410
[23] Bowers P. L. 1989 Limitation topologies on function spaces Trans. Amer. Math. Soc.314 421-431 · Zbl 0688.54008 · doi:10.2307/2001449
[24] Nagata J. 1983 Sigma Ser. Pure Math.2 (Berlin: Heldermann Verlag) · Zbl 0518.54002
[25] Aleksandrov P. S. and Pasynkov B. A. 1973 Introduction to dimension theory (Moscow: Nauka) · Zbl 0272.54028
[26] Mill J. van 1989 North-Holland Math. Library43 (Amsterdam: North-Holland) · Zbl 0663.57001
[27] Ageev S. M. and Repovš D. 2001 A new construction of semi-free actions on Menger manifolds Proc. Amer. Math. Soc.129 1551-1562 · Zbl 0964.57035 · doi:10.1090/S0002-9939-00-05661-6
[28] Michael E. 1956 Continuous selections. II Ann. of Math. (2)64 562-580 · Zbl 0073.17702 · doi:10.2307/1969603
[29] Hurewicz W. and Wallman H. 1941 Princeton Math. Ser.4 (Princeton, NJ: Princeton Univ. Press) · Zbl 0060.39808
[30] Bowers P. L. 1987 Dense embeddings of nowhere locally compact separable metric spaces Topology Appl.26 1-12 · Zbl 0624.54014 · doi:10.1016/0166-8641(87)90021-6
[31] Ageev S. M. and Bogatyj S. A. 1994 Sewing in some classes of spaces Vestn. Mosk. Gos. Univ. Ser. 1. Mat., Mekh.49 19-23 · Zbl 0898.54019
[32] Repovš D. and Semenov P. V. 1998 Math. Appl.455 (Dordrecht: Kluwer) · Zbl 0915.54001 · doi:10.1007/978-94-017-1162-3
[33] Brodskii N. B. 1999 Extension of maps to the hyperspace of \(UV^n\)-compacta Uspekhi Mat. Nauk54 153-154 · Zbl 0964.54007 · doi:10.4213/rm233
[34] Brodskii N. B. 1999 Extension of \(UV^n\)-valued mappings Mat. Zametki66 351-363 · Zbl 0996.54019 · doi:10.4213/mzm1175
[35] Brodsky N. B. 2002 Sections of maps with fibers homeomorphic to a two-dimensional manifold Topology Appl.120 77-83 · Zbl 0998.54010 · doi:10.1016/S0166-8641(01)00009-8
[36] Brodsky N., Chigogidze A. and Ščepin E. V. 2008 Sections of Serre fibrations with 2-manifold fibers Topology Appl.155 773-782 · Zbl 1157.55013 · doi:10.1016/j.topol.2006.09.019
[37] Ageev S. M., Cencelj M. and Repovš D. 2009 Preserving \(Z\)-sets by Dranishnikov’s resolution Topology Appl.156 2175-2188 · Zbl 1182.54040 · doi:10.1016/j.topol.2009.04.003
[38] Michael E. 1988 Continuous selections avoiding a set Topology Appl.28 195-213 · Zbl 0654.54014 · doi:10.1016/0166-8641(88)90042-9
[39] Bowers P. L. 1985 Dense embeddings of sigma-compact, nowhere locally compact metric spaces Proc. Amer. Math. Soc.95 123-130 · Zbl 0587.54021 · doi:10.1090/S0002-9939-1985-0796460-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.