×

Killing symmetries as Hamiltonian constraints. (English) Zbl 1339.83022

Summary: The existence of a Killing symmetry in a gauge theory is equivalent to the addition of extra Hamiltonian constraints in its phase space formulation, which imply restrictions both on the Dirac observables (the gauge invariant physical degrees of freedom) and on the gauge freedom. When there is a time-like Killing vector field only pure gauge electromagnetic fields survive in Maxwell theory in Minkowski space-time, while in ADM canonical gravity in asymptotically Minkowskian space-times only inertial effects without gravitational waves survive.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C35 Gravitational waves
83C22 Einstein-Maxwell equations
83C40 Gravitational energy and conservation laws; groups of motions
78A25 Electromagnetic theory (general)
83A05 Special relativity
70H20 Hamilton-Jacobi equations in mechanics

References:

[1] 1. A. E. Fischer, The theory of superspace, in Relativity, eds. M. Carmeli, L. Fickler and L. Witten (Plenum, New York, 1970); Resolving the singularities in the space of Riemannian geometries, J. Math. Phys. 27 (1986) 718. · Zbl 0604.58007
[2] 2. J. M. Arms, J. E. Marsden and V. Moncrief, Symmetries and bifurcations of momentum mappings, Commun. Math. Phys.78 (1981) 455. genRefLink(16, ’S0219887816500444BIB002’, ’10.1007
[3] 3. S. T. Swift, Natural bundles I. A minimal resolution of superspace, J. Math. Phys. 33 (1992) 3723; Natural bundles II. Spin and the diffeomorphism group, J. Math. Phys. 34 (1993) 3825; Natural bundles III. Resolving the singularities in the space of immersed submanifolds, J. Math. Phys. 34 (1993) 3841. · Zbl 0778.55009
[4] 4. V. Moncrief, Decompositions of gravitational perturbations, J. Math. Phys. 16 (1975) 1556; Space-time symmetries and linearization stability of Einstein equations I and II, J. Math. Phys. 16 (1975) 493; 17 (1976) 1893.
[5] 5. J. Arms, Symmetries and solution set singularities in Hamiltonian field theories, Acta Phys. Pol. B17 (1986) 499; The structure of the solution set for the Yang-Mills equations, Math. Proc. Camb. Phil. Soc. 90 (1981) 361; Linearization stability of gravitational and gauge fields, J. Math. Phys. 20 (1979) 443.
[6] 6. V. Moncrief, Gribov degeneracies: Coulomb gauge conditions and initial value constraints, J. Math. Phys.20 (1979) 579. genRefLink(16, ’S0219887816500444BIB006’, ’10.1063
[7] 7. L. Lusanna, Classical Yang-Mills theory with fermions. I. General properties of a system with constraints, Int. J. Mod. Phys. A 10 (1995) 3531-3579; II. Dirac’s observables, Int. J. Mod. Phys. A 10 (1995) 3675-3757. · Zbl 1044.81672
[8] 8. Y. Choquet-Bruhat, Positive-energy theorems, in Relativity, Groups and Topology II, eds. B. S. De Witt and R. Stora (North-Holland, Amsterdam, 1984).
[9] 9. Y. Choquet-Bruhat and J. W. York, Jr., The cauchy problem, in General Relativity and Gravitation, Vol. 1, ed. A. Held (Plenum Press, New York, 1980), pp. 99-172.
[10] 10. M. Cantor, Elliptic operators and the decomposition of tensor fields, Bull. Am. Math. Soc. 5 (1981) 235; Some problems of global analysis on asymptotically simple manifolds, Comp. Math. 38 (1979) 3; The existence of non-trivial asymptotically flat initial data for vacuum space-times, Commun. Math. Phys. 57 (1977) 83.
[11] 11. R. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity, in Gravitation: An Introduction to Current Research, ed. L. Witten (Wiley, New York, 1962), arXiv: gr-qc/0405109 [arXiv] . · Zbl 1152.83320
[12] 12. R. Beig and Ó. Murchadha, The poincaré group as the symmetry group of canonical general relativity, Ann. Phys. (N.Y.)174 (1987) 463. genRefLink(16, ’S0219887816500444BIB012’, ’10.1016
[13] 13. P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monographs Series (Yeshiva University, New York (N.Y.), 1964). · Zbl 0141.44603
[14] 14. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992). · Zbl 0838.53053
[15] 15. L. Lusanna, The rest-frame instant form of metric gravity, Gen. Relativ. Gravit.33 (2001) 1579-1696, arXiv: gr-qc/0101048 [arXiv] . genRefLink(16, ’S0219887816500444BIB015’, ’10.1023
[16] 16. L. Lusanna and S. Russo, A new parametrization for tetrad gravity, Gen. Relativ. Gravit.34 (2002) 189-242, arXiv: gr-qc/0102074 [arXiv] . genRefLink(16, ’S0219887816500444BIB016’, ’10.1023
[17] 17. R. De Pietri, L. Lusanna, L. Martucci and S. Russo, Dirac’s observables for the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge, Gen. Relativ. Gravit.34 (2002) 877-1033, arXiv: gr-qc/0105084 [arXiv] . genRefLink(16, ’S0219887816500444BIB017’, ’10.1023 · Zbl 1005.83002
[18] 18. J. Agresti, R. De Pietri, L. Lusanna and L. Martucci, Hamiltonian linearization of the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge: A radiation gauge for background-independent gravitational waves in a post-Minkowskian Einstein space-time, Gen. Relativ. Gravit.36 (2004) 1055-1134, arXiv: gr-qc/0302084 [arXiv] . genRefLink(16, ’S0219887816500444BIB018’, ’10.1023 · Zbl 1059.83014
[19] 19. D. Alba and L. Lusanna, The york map as a shanmugadhasan canonical transformation in tetrad gravity and the role of non-inertial frames in the geometrical view of the gravitational field, Gen. Relativ. Gravit.39 (2007) 2149, arXiv: gr-qc/0604086, v2 [arXiv] . genRefLink(16, ’S0219887816500444BIB019’, ’10.1007 · Zbl 1136.83004
[20] 20. D. Alba and L. Lusanna, The Einstein-Maxwell-particle system in the york canonical basis of ADM tetrad gravity: (I) The equations of motion in arbitrary Schwinger time gauges, Canad. J. Phys. 90 (2012) 1017, arXiv: 0907.4087; (II) The weak field approximation in the 3-orthogonal gauges and Hamiltonian post-Minkowskian gravity: The N-body problem and gravitational waves with asymptotic background, Canad. J. Phys. 90 (2012) 1077, arXiv: 1003.5143; (III) The post-Minkowskian N-body problem, its post-Newtonian limit in non-harmonic 3-orthogonal gauges and dark matter as an inertial effect, Canad. J. Phys. 90 (2012) 1131, arXiv: 1009.1794.
[21] 21. L. Lusanna and M. Villani, Hamiltonian expression of curvature tensors in the york canonical basis: (I) The Riemann tensor and Ricci scalars; (II) The Weyl tensor, Weyl scalars, The Weyl eigenvalues and the problem of the observables of the gravitational field, Int. J. Geom. Meth. Phys.11 (2014) 1450052, (2014) 1450053, arXiv: 1401.1375. [Abstract] genRefLink(128, ’S0219887816500444BIB021’, ’000339628900001’); · Zbl 1301.83030
[22] 22. L. Lusanna, From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect, Lecture at the Black Objects in Supergravity School BOSS2011, Frascati, 9-13 May 2011, Springer Proc. Phys. 144 (2013) 267-343, arXiv: 1205.2481; Non-Inertial Frames in Special and General Relativity, to appear in the Proceedings of the School Gravity: Where do we stand?, 11-15 May 2009, Villa Olmo, Como, Italy, ed. R. Peron, arXiv: 1310.4465; Canonical ADM tetrad gravity: From metrological inertial gauge variables to dynamical tidal dirac observables, Int. J. Geom. Meth. Mod. Phys. 12 (2015) 1530001, arXiv: 1401.1375.
[23] 23. H. Bondi, Assumption and Myth in Physical Theory (Cambridge University Press, Cambridge, 1967).
[24] 24. R. D’Inverno, Introducing Einstein Relativity (Oxford University Press, Oxford, 1992).
[25] 25. D. Alba and L. Lusanna, Charged particles and the electro-magnetic field in non-inertial frames: I. Admissible 3+1 splittings of Minkowski space-time and the non-inertial rest frames, Int. J. Geom. Methods Phys. 7 (2010) 33, arXiv: 0908.0213; II. Applications: Rotating frames, Sagnac effect, Faraday rotation, wrap-up effect Int. J. Geom. Methods Phys. 7 (2010) 185, arXiv: 0908.0215, Generalized radar4-coordinates and equal-time cauchy surfaces for arbitrary accelerated observers (2005), Int. J. Mod. Phys. D 16 (2007) 1149, arXiv: gr-qc/0501090.
[26] 26. A. Ashtekar, Asymptotic structure of the gravitational field at spatial infinity, in General Relativity and Gravitation, Vol. 2, ed. A. Held (Plenum, New York, 1980).
[27] 27. L. Lusanna, The N- and 1-Time classical descriptions of N-body relativistic kinematics and the electromagnetic interaction, Int. J. Mod. Phys. A 12 (1997) 645; The chronogeometrical structure of special and general relativity: Towards a background-independent description of the gravitational field and elementary particles (2004), in General Relativity Research Trends, ed. A. Reiner, Horizon in World Physics, Vol. 249 (Nova Science, New York, 2005), arXiv: gr-qc/0404122; Towards a unified description of the four interactions in terms of Dirac-Bergmann observables, in Quantum Field Theory: A 20th Century Profile of the Indian National Science Academy, ed. A. N. Mitra, (Hindustan Book Agency, New Delhi, 2000), arXiv: hep-th/9907081.
[28] 28. P. A. M. Dirac, Gauge invariant formulation of quantum electrodynamics, Can. J. Phys.33 (1955) 650-659. genRefLink(16, ’S0219887816500444BIB028’, ’10.1139
[29] 29. S. Shanmugadhasan, Canonical formalism for degenerate lagrangians, J. Math. Phys.14 (1973) 677. genRefLink(16, ’S0219887816500444BIB029’, ’10.1063
[30] 30. L. Lusanna, The Shanmugadhasan canonical transformation, function groups and the second Noether theorem, Int. J. Mod. Phys. A 8 (1993) 4193; The Relevance of Canonical Transformations in Gauge Theories and General Relativity, Lecture Notes of ”Seminario Interdisciplinare di Matematica” (Basilicata University, 2006), p. 125.
[31] 31. L. Lusanna and M. Pauri, The physical role of gravitational and gauge degrees of freedom in general relativity-I: Dynamical synchronization and generalized inertial effects; II: Dirac versus Bergmann observables and the objectivity of Space-Time, Gen. Relativ. Gravit. 38 (2006) 187; arXiv: gr-qc/0403081, 229 (2006), arXiv: 0407007; Explaining leibniz equivalence as difference of non-inertial appearances: Dis-solution of the hole argument and physical individuation of point-events, oxford conference on space-time theory (2004), Studies in history and philosophy of modern physics 37 (2006) 692, arXiv: gr-qc/0604087; Dynamical emergence of instantaneous 3-spaces in a class of models of general relativity, in Relativity and the Dimensionality of the World, ed. A. Van der Merwe, (Springer, Vol. 157 (2007) 229), arXiv: gr-qc/0611045.
[32] 32. S. B. Edgar and G. Ludwig, Integration in the GHP formalism IV: A new lie derivative operator leading to an efficient treatment of killing vectors, Gen. Relativ. Gravit.32 (2000) 637. genRefLink(16, ’S0219887816500444BIB032’, ’10.1023 · Zbl 1006.83007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.