×

\((3 + 1)\)-formulation for gravity with torsion and non-metricity: the stress-energy-momentum equation. (English) Zbl 1482.83003

Summary: We derive the generalized Gauss-Codazzi-Mainardi (GCM) equation for a general affine connection with torsion and non-metricity. Moreover, we show that the metric compatibility and torsionless condition of a connection on a manifold are inherited to the connection of its hypersurface. As a physical application to these results, we derive the (3 + 1)-Einstein field equation (EFE) for a special case of metric-affine \(f(\mathcal{R})\)-gravity when \(f(\mathcal{R})=\mathcal{R}\), the metric-affine general relativity (MAGR). Motivated by the concept of geometrodynamics, we introduce additional variables on the hypersurface as a consequence of non-vanishing torsion and non-metricity. With these additional variables, we show that for MAGR, the energy, momentum, and the stress-energy part of the EFE are dynamical, i.e., all of them contain the derivative of a quantity with respect to the time coordinate. For the Levi-Civita connection, one could recover the Hamiltonian and the momentum (diffeomorphism) constraint, and obtain the standard dynamics of GR.
For Part II see [the authors, ibid. 38, No. 22, Article ID 225006, 42 p. (2021; Zbl 1479.83006)].

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C80 Analogues of general relativity in lower dimensions
53B05 Linear and affine connections
58J52 Determinants and determinant bundles, analytic torsion
83E05 Geometrodynamics and the holographic principle
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
70H45 Constrained dynamics, Dirac’s theory of constraints

Citations:

Zbl 1479.83006

References:

[1] Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K., Modified gravity theories on a nutshell: inflation, bounce and late-time evolution, Phys. Rep., 692, 1-104 (2017) · Zbl 1370.83084 · doi:10.1016/j.physrep.2017.06.001
[2] Sotiriou, T. P.; Faraoni, V., f(R) theories of gravity, Rev. Mod. Phys., 82, 451-497 (2010) · Zbl 1205.83006 · doi:10.1103/revmodphys.82.451
[3] Aldrovandi, R.; Pereira, J. G., Teleparallel Gravity: an Introduction (2013), New York: Springer, New York · Zbl 1259.83002
[4] Nester, J. M.; Yo, H. J., Symmetric teleparallel general relativity, Chin. J. Phys., 37 (1999) · Zbl 07844754
[5] Jimenez, J. B.; Heisenberg, L.; Koivisto, T., Teleparallel Palatini theories, J. Cosmol. Astropart. Phys. (2018) · Zbl 1536.83106 · doi:10.1088/1475-7516/2018/08/039
[6] Jimenez, J. B.; Heisenberg, L.; Iosifidis, D.; Jimenez-Cano, A.; Koivisto, T. S., General teleparallel quadratic gravity, Phys. Lett. B, 805 (2020) · Zbl 1436.83055 · doi:10.1016/j.physletb.2020.135422
[7] Hehl, F. W.; McCrea, J. D.; Mielke, E. W.; Ne’eman, Y., Metric-affine gauge theory of gravity: field equations, noether identities, world spinors, and breaking of dilation invariance, Phys. Rep., 258, 1-171 (1995) · doi:10.1016/0370-1573(94)00111-f
[8] Iosifidis, D., Metric-affine gravity and cosmology/aspects of torsion and non-metricity in gravity theories, Doctoral Thesis (2019)
[9] Hehl, F. W.; von der Heyde, P.; Kerlick, G. D.; Nester, J. M., General relativity with spin and torsion: foundations and prospects, Rev. Mod. Phys., 48, 393 (1976) · Zbl 1371.83017 · doi:10.1103/revmodphys.48.393
[10] Hehl, F. W.; Kerlick, G. D.; Heyde, P. v d., On hypermomentum in general relativity I. The notion of hypermomentum, Z. Naturforsch. A, 31, 111-114 (1976) · doi:10.1515/zna-1976-0201
[11] Hehl, F. W.; Kerlick, G. D.; Heyde, P. v d., On hypermomentum in general relativity II. The geometry of spacetime, Z. Naturforsch. A, 31, 524-527 (1976) · doi:10.1515/zna-1976-0602
[12] Hehl, F. W.; Kerlick, G. D.; Heyde, P. v d., On hypermomentum in general relativity III. Coupling hypermomentum to geometry, Z. Naturforsch. A, 31, 823-827 (1976) · doi:10.1515/zna-1976-0724
[13] Darmois, G., Les èquations de la gravitation einsteinienne, Mémorial des Sciences Mathématiques, vol 25 (1927), (Paris: Hermann), (Paris · JFM 53.0816.03
[14] Lichnerowicz, A., Sur certains problèmes globaux relatifs au système des équations d’Einstein, Actualite Scientifique et Industrielle, vol 833 (1939), (Paris: Hermann), (Paris · JFM 65.1046.05
[15] Lichnerowicz, A., L’intégration des équations de la gravitation relativiste et le problème des n-corps, J. Math. Pures Appl., 23, 37-62 (1944) · Zbl 0060.44410
[16] Lichnerowicz, A., Sur les équations relativistes de la gravitation, Bull. Soc. Math. France, 80, 237-251 (1952) · Zbl 0049.27204
[17] Fourès-Bruhat, Y., Théorème d’existence pour certains systèms d’équations aux dérivés partielles non linéaires, Acta Math., 88, 141-225 (1952) · Zbl 0049.19201 · doi:10.1007/bf02392131
[18] Fourès-Bruhat, Y., Sur l’intégration des equations de la relativité générale, J. Ration. Mech. Anal., 5, 951-966 (1956) · Zbl 0075.21602 · doi:10.1512/iumj.1956.5.55036
[19] Arnowitt, R.; Deser, S.; Misner, C. W.; Witten, L., The dynamics of general relativity, Gravitation: an Introduction to Current Research, 227-265 (1962), (New York: Wiley), (New York · Zbl 0115.43103
[20] Deruelle, N.; Sendouda, Y.; Youssef, A., Various Hamiltonian formulations of f(R)-gravity and their canonical relationships, Phys. Rev. D, 80 (2009) · doi:10.1103/physrevd.80.084032
[21] Paschalidis, V.; Halataei, S. M H.; Shapiro, S. L.; Sawicki, I., Constraint propagation equations of the 3 + 1 decomposition of f(R) gravity, Class. Quantum Grav., 28 (2011) · Zbl 1213.83027 · doi:10.1088/0264-9381/28/8/085006
[22] Blixt, D.; Hohmann, M.; Pfeifer, C., Hamiltonian and primary constraints of new general relativity, Phys. Rev. D, 99 (2019) · doi:10.1103/physrevd.99.084025
[23] Olmo, G. J.; Sanchis-Alepuz, H., Hamiltonian formulation of Palatini f(R) theories a la Brans-Dicke, Phys. Rev. D, 83 (2011) · doi:10.1103/physrevd.83.104036
[24] Zhang, X.; Ma, Y., Extension of loop quantum gravity to f(R)-theories, Phys. Rev. Lett., 106 (2011) · doi:10.1103/physrevlett.106.171301
[25] Zhang, X.; Ma, Y., Loop quantum f(R) theories, Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.104045
[26] Iosifidis, D.; Tsagas, C. G.; Petkou, A. C., The Raychaudhuri equation in spacetimes with torsion and non-metricity, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.104037
[27] Iosifidis, D., Linear transformations on affine-connections, Class. Quantum Grav., 37 (2020) · Zbl 1479.83056 · doi:10.1088/1361-6382/ab778d
[28] Jimenez, J. B.; Delhom, A., Instabilities in metric-affine theories of gravity with higher order curvature terms, Eur. Phys. J. C, 80, 585 (2020) · doi:10.1140/epjc/s10052-020-8143-z
[29] Iosifidis, D., Exactly solvable connections in metric-affine gravity, Class. Quantum Grav., 36 (2019) · Zbl 1476.83126 · doi:10.1088/1361-6382/ab0be2
[30] Hehl, F. W.; Lord, E. A.; Smalley, L. L., Metric-affine variational principles in general relativity II. Relaxation of the Riemannian constraint, Gen. Relativ. Gravit., 13, 1037-1056 (1981) · Zbl 0477.53037 · doi:10.1007/bf00756364
[31] Wheeler, J. A., Geometrodynamics and the issue of the final state, Relativity, Groups and Topology, p 316 (1964), London: Gordon and Breach, London · Zbl 0148.46204
[32] Baez, J.; Muniain, J. P., Gauge Fields, Knots and Gravity (1994), Singapore: World Scientific, Singapore · Zbl 0843.57001
[33] Gourgoulhon, E., 3 + 1 Formalism and Bases of Numerical Relativity (2012), Berlin: Springer, Berlin · Zbl 1254.83001
[34] Olmo, G. J., Palatini approach to modified gravity: f(R) theories and beyond, Int. J. Mod. Phys. D, 20, 413-462 (2011) · Zbl 1217.83004 · doi:10.1142/s0218271811018925
[35] Miller, W. A., The Hilbert action in Regge calculus, Class. Quantum Grav., 14, L199-204 (1997) · Zbl 0904.53053 · doi:10.1088/0264-9381/14/12/004
[36] Schouten, J. A.; Calculus, R., An Introduction to Tensor Analysis and its Geometrical Applications (1954), Berlin: Springer, Berlin · Zbl 0057.37803
[37] Percacci, R., Gravity from a particle physicists’ perspective, 011 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.