×

Bigravity in Hamiltonian formalism. (Russian. English summary) Zbl 1413.83009

Summary: Theory of bigravity is one of approaches proposed to solve the dark energy problem of the Universe. It deals with two metric tensors, each one is minimally coupled to the corresponding set of matter fields. The bigravity Lagrangian equals to a sum of two general relativity Lagrangians with the different gravitational coupling constants and different fields of matter accompanied by the ultralocal potential. As a rule, such a theory has 8 gravitational degrees of freedom: the massless graviton, the massive graviton and the ghost. A special choice of the potential, suggested by de Rham, Gabadadze and Toley (dRGT), allows to avoid of the ghost. But the dRGT potential is constructed by means of the matrix square root, and so it is not an explicit function of the metrics components. One way to do with this difficulty is to apply tetrads. Here we consider an alternative approach. The potential as a differentiable function of metrics components is supposed to exist, but we never appeal to the explicit form of this function. Only properties of this function necessary and sufficient to exclude the ghost are studied. The final results are obtained from the constraint analysis and the Poisson brackets calculations. The gravitational variables are the two induced metrics and their conjugated momenta. Also lapse and shift variables for both metrics are involved. After the exclusion of 3 auxiliary variables we stay with 4 first class constraints and 2 second class ones responsible for the ghost exclusion. The requirements for the potential are as follows:
1.
the potential should satisfy a system of the first-order linear differential equations;
2.
the potential should satisfy the homogeneous Monge-Ampère equation in 4 auxiliary variables;
3.
the Hessian of the potential in 3 auxiliary variables is non-degenerate.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C40 Gravitational energy and conservation laws; groups of motions
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics

References:

[1] [1] Soloviev V. O., “Bigravity in Hamiltonian formalism”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 334–335 (In Russian)
[2] [2] Rosen N., “General Relativity and Flat Space. I”, Phys. Rev., 57:2 (1940), 147–150 · Zbl 0023.18705 · doi:10.1103/physrev.57.147
[3] [3] Rosen N., “General Relativity and Flat Space. II”, Phys. Rev., 57:2 (1940), 150–153 · Zbl 0023.18801 · doi:10.1103/physrev.57.150
[4] [4] Rosen N., “Flat-space metric in general relativity theory”, Ann. of Phys., 22:1 (1963), 1–11 · Zbl 0112.44401 · doi:10.1016/0003-4916(63)90293-8
[5] [5] Rosen N., “A bi-metric theory of gravitation”, Gen. Rel. Grav., 4:6 (1973), 435–447 · Zbl 0977.83501 · doi:10.1007/bf01215403
[6] [6] Isham C. J., Salam A., Strathdee J., “Spontaneous breakdown of conformal symmetry”, Phys. Lett. B, 31:5 (1970), 300–302 · doi:10.1016/0370-2693(70)90177-2
[7] [7] Isham C. J., Salam A., Strathdee J., “\(f\)-Dominance of Gravity”, Phys. Rev. D, 3:4 (1971), 867–873 · Zbl 0209.58701 · doi:10.1103/physrevd.3.867
[8] [8] Zumino B., “Effective Lagrangians and broken symmetries”, Lectures on Elementary Particles and Quantum Field Theory, v. 2, eds. S. Deser, M. Grisaru, H. Pedleton, MIT Press, Cambridge, MA, 1970, 437–500
[9] [9] Damour T., Kogan I. I., “Effective Lagrangians and universality classes of nonlinear bigravity”, Phys. Rev. D, 66:10 (2002), 104024, 17 pp., arXiv: · doi:10.1103/physrevd.66.104024
[10] [10] de Rham C., Gabadadze G., Tolley A. J., “Resummation of Massive Gravity”, Phys. Rev. Lett., 106:23 (2011), 231101, 4 pp., arXiv: · Zbl 1306.83062 · doi:10.1103/physrevlett.106.231101
[11] [11] de Rham C., Gabadadze G., Tolley A. J., “Ghost free massive gravity in the Stückelberg language”, Phys. Lett. B, 711:2 (2012), 190–195, arXiv: · doi:10.1016/j.physletb.2012.03.081
[12] [12] Boulware D. G., Deser S., “Can Gravitation Have a Finite Range?”, Phys. Rev. D, 6:12 (1972), 3368–3382 · doi:10.1103/physrevd.6.3368
[13] [13] Hassan S. F., Rosen R. A., “Bimetric gravity from ghost-free massive gravity”, J. High Energ. Phys., 2012:2, 126, arXiv: · Zbl 1309.83083 · doi:10.1007/jhep02(2012)126
[14] [14] Hassan S. F., Rosen R. A., “Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity”, J. High Energ. Phys., 2012:4 (2012), 123, arXiv: · Zbl 1348.83065 · doi:10.1007/jhep04(2012)123
[15] [15] Hinterbichler K., Rosen R. A., “Interacting spin-2 fields”, J. High Energ. Phys., 2012:7 (2012), 047, arXiv: · Zbl 1397.83153 · doi:10.1007/jhep07(2012)047
[16] [16] Alexandrov S., Krasnov K., Speziale S., “Chiral description of massive gravity”, J. High Energ. Phys., 2013:6 (2013), 068, arXiv: · Zbl 1342.83043 · doi:10.1007/JHEP06(2013)068
[17] [17] Alexandrov S., “Canonical structure of tetrad bimetric gravity”, Gen. Rel. Grav., 46:1 (2014), 1639, arXiv: · Zbl 1286.83006 · doi:10.1007/s10714-013-1639-1
[18] [18] Kluson J., “Hamiltonian formalism of bimetric gravity in vierbein formulation”, Eur. Phys. J. C, 74:8, 2985, arXiv: · doi:10.1140/epjc/s10052-014-2985-1
[19] [19] Soloviev V. O., Bigravity in tetrad Hamiltonian formalism and matter couplings, 2014, 25 pp., arXiv:
[20] [20] Soloviev V. O., Chichikina M. V., “Bigravity in the Kuchař Hamiltonian formalism: The general case”, Theoret. and Math. Phys., 176:3 (2013), 1163–1175, arXiv: · Zbl 1286.83086 · doi:10.1007/s11232-013-0097-y
[21] [21] Soloviev V. O., Tchichikina M. V., “Bigravity in Kuchar’s Hamiltonian formalism. 2. The special case”, Phys. Rev. D, 88:8 (2013), 084026, arXiv: · doi:10.1103/PhysRevD.88.084026
[22] [22] Comelli D., Crisostomi M., Nesti F., Pilo L., “Degrees of freedom in massive gravity”, Phys. Rev. D, 86:10 (2012), 101502(R), arXiv: · Zbl 1309.83030 · doi:10.1103/physrevd.86.101502
[23] [23] Comelli D., Nesti F., Pilo L., “Weak massive gravity”, Phys. Rev. D, 87:12 (2013), arXiv: · Zbl 1342.83271 · doi:10.1103/physrevd.87.124021
[24] [24] Comelli D., Nesti F., Pilo L., “Massive gravity: a general analysis”, J. High Energ. Phys., 2013:7 (2013), 161, arXiv: · Zbl 1342.83271 · doi:10.1007/jhep07(2013)161
[25] [25] Arnowitt R., Deser S., Misner Ch. W., “The Dynamics of General Relativity”, Chapter 7, Gravitation: an introduction to current research, ed. L. Witten, Wiley, 1962, 227–265 · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[26] [26] Kuchař K., “Geometry of hyperspace. I”, J. Math. Phys., 17:5 (1976), 777–791 · doi:10.1063/1.522976
[27] [27] Kuchař K., “Kinematics of tensor fields in hyperspace. II”, J. Math. Phys., 17:5 (1976), 792–800 · doi:10.1063/1.522977
[28] [28] Kuchař K., “Dynamics of tensor fields in hyperspace. III”, J. Math. Phys., 17:5 (1976), 801–820 · doi:10.1063/1.522978
[29] [29] Kuchař K., “Geometrodynamics with tensor sources. IV”, J. Math. Phys., 18:8 (1977), 1589–1597 · doi:10.1063/1.523467
[30] [30] Fairlie D., Leznov A., “General solutions of the Monge-Ampère equation in \(n\)-dimensional space”, J. Geom. Phys., 16:4 (1995), 385–390, arXiv: · Zbl 0823.35034 · doi:10.1016/0393-0440(94)00035-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.