×

A dimension splitting method for time dependent PDEs on irregular domains. (English) Zbl 1504.65183

Summary: We develop a simple and efficient dimension splitting method for solving time dependent partial differential equations (PDEs) on multiple space dimensional irregular domains using a one dimensional kernel-free boundary integral (KFBI) method. The proposed method extends the alternating direction implicit methods and locally one dimensional methods to more general cases involving complex geometry. The KFBI method is a potential theory based Cartesian grid method, which works as an improvement of conventional boundary integral methods. In the KFBI method, boundary or volume integrals are evaluated by solving equivalent interface problems without using any analytic expression of Green’s functions. The one dimensional interface problems after dimension splitting are solved by finite difference method. The resulting linear systems are tri-diagonal and efficiently solved by the Thomas algorithm. The one dimensional kernel-free boundary integral method is rigorously proved to have second-order convergence rate in the maximum norm. Multiple numerical examples, including different types of PDEs and a free boundary problem, are presented to demonstrate the advantages of the proposed method. Numerical results show that the proposed method is efficient and achieves overall second order accuracy.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65F05 Direct numerical methods for linear systems and matrix inversion
35R35 Free boundary problems for PDEs

Software:

FEAPpv; GitHub
Full Text: DOI

References:

[1] Beale, JT, A grid-based boundary integral method for elliptic problems in three dimensions, SIAM J. Numer. Anal., 42, 2, 599-620 (2004) · Zbl 1159.65368 · doi:10.1137/S0036142903420959
[2] Chen, S.; Merriman, B.; Osher, S.; Smereka, P., A simple level set method for solving Stefan problems, J. Comput. Phys., 135, 1, 8-29 (1997) · Zbl 0889.65133 · doi:10.1006/jcph.1997.5721
[3] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM (2002) · Zbl 0999.65129
[4] Douglas, J.; Gunn, JE, Alternating direction methods for parabolic systems in mspace variables, J. ACM (JACM), 9, 4, 450-456 (1962) · Zbl 0112.35104 · doi:10.1145/321138.321142
[5] Douglas, J. Jr, On the numerical integration of \(\frac{\partial^2 u}{\partial x^2 } + \frac{\partial^2 u}{\partial y^2 } = \frac{\partial u}{\partial t}\) by implicit methods, J. Soc. Ind. Appl. Math., 3, 1, 42-65 (1955) · Zbl 0067.35802 · doi:10.1137/0103004
[6] D’Yakonov, E., Difference schemes with splitting operators for multidimensional unsteady problems (English translation), URSS Comp. Math., 3, 581-607 (1963) · Zbl 0208.42302
[7] Geiser, J.: Operator splitting methods for wave equations. Int. Math. Forum 2 (2007) · Zbl 1190.86005
[8] Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation (2012)
[9] Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, vol. 33. Springer (2007) · Zbl 1030.65100
[10] Kim, S.; Lim, H., High-order schemes for acoustic waveform simulation, Appl. Numer. Math., 57, 4, 402-414 (2007) · Zbl 1113.65087 · doi:10.1016/j.apnum.2006.05.003
[11] Kress, R.: Linear Integral Equations, vol. 82. Springer (1989) · Zbl 0671.45001
[12] LeVeque, RJ; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083 · doi:10.1137/0731054
[13] Li, Z., Mayo, A.: ADI Methods for Heat Equations with Discontinuities Along an Arbitrary Interface. IBM Thomas J, Watson Research Division (1993) · Zbl 0815.65101
[14] Li, Z., A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal., 35, 1, 230-254 (1998) · Zbl 0915.65121 · doi:10.1137/S0036142995291329
[15] Liu, J.; Zheng, Z., A dimension by dimension splitting immersed interface method for heat conduction equation with interfaces, J. Comput. Appl. Math., 261, 221-231 (2014) · Zbl 1278.65125 · doi:10.1016/j.cam.2013.10.051
[16] Liu, JK; Zheng, ZS, Efficient high-order immersed interface methods for heat equations with interfaces, Appl. Math. Mech. (Engl. Ed.), 35, 9, 1189-1202 (2014) · Zbl 1298.65124 · doi:10.1007/s10483-014-1851-6
[17] Ma, C., Zhang, Q., Zheng, W.: A high-order fictitious-domain method for the advection-diffusion equation on time-varying domain. arXiv e-prints arXiv:2104.01870 (2021)
[18] Mayo, A., The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal., 21, 2, 285-299 (1984) · Zbl 1131.65303 · doi:10.1137/0721021
[19] Osher, S.; Sethian, JA, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations., J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[20] Peaceman, DW; Rachford, HH Jr, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3, 1, 28-41 (1955) · Zbl 0067.35801 · doi:10.1137/0103003
[21] Peskin, CS, The immersed boundary method, Acta Numerica, 11, 479-517 (2002) · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[22] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003) · Zbl 1031.65046
[23] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[24] Wei, Z.; Li, C.; Zhao, S., A spatially second order alternating direction implicit (adi) method for solving three dimensional parabolic interface problems, Comput. Math. Appl., 75, 6, 2173-2192 (2018) · Zbl 1409.65059 · doi:10.1016/j.camwa.2017.06.037
[25] Xie, Y.; Ying, W., A fourth-order kernel-free boundary integral method for the modified Helmholtz equation, J. Sci. Comput., 78, 3, 1632-1658 (2019) · Zbl 1418.35094 · doi:10.1007/s10915-018-0821-8
[26] Xie, Y.; Ying, W., A fourth-order kernel-free boundary integral method for implicitly defined surfaces in three space dimensions, J. Comput. Phys., 415 (2020) · Zbl 1440.65158 · doi:10.1016/j.jcp.2020.109526
[27] Xie, Y.; Ying, W., A high-order kernel-free boundary integral method for incompressible flow equations in two space dimensions, Numer. Math., 13, 3, 595-619 (2020) · Zbl 1463.65277
[28] Xie, Y.; Ying, W.; Wang, WC, A high-order kernel-free boundary integral method for the biharmonic equation on irregular domains, J. Sci. Comput., 80, 3, 1681-1699 (2019) · Zbl 1428.65103 · doi:10.1007/s10915-019-01000-6
[29] Yanenko, NN, On the convergence of the splitting method for the heat conductivity equation with variable coefficients, USSR Comput. Math. Math. Phys., 2, 5, 1094-1100 (1963) · Zbl 0229.65083 · doi:10.1016/0041-5553(63)90516-0
[30] Ying, W., A cartesian grid-based boundary integral method for an elliptic interface problem on closely packed cells, Commun. Comput. Phys., 24, 4, 1196-1220 (2018) · Zbl 1475.65210 · doi:10.4208/cicp.2018.hh80.05
[31] Ying, W.; Henriquez, CS, A kernel-free boundary integral method for elliptic boundary value problems, J. Comput. Phys., 227, 2, 1046-1074 (2007) · Zbl 1128.65102 · doi:10.1016/j.jcp.2007.08.021
[32] Ying, W.; Wang, WC, A kernel-free boundary integral method for implicitly defined surfaces, J. Comput. Phys., 252, 606-624 (2013) · Zbl 1349.65662 · doi:10.1016/j.jcp.2013.06.019
[33] Ying, W.; Wang, WC, A kernel-free boundary integral method for variable coefficients elliptic pdes, Commun. Comput. Phys., 15, 4, 1108-1140 (2014) · Zbl 1388.65171 · doi:10.4208/cicp.170313.071113s
[34] Zhao, S., A matched alternating direction implicit (adi) method for solving the heat equation with interfaces, J. Sci. Comput., 63, 1, 118-137 (2015) · Zbl 1319.65083 · doi:10.1007/s10915-014-9887-0
[35] Zhou, H., Ying, W.: https://github.com/zhouhan-sjtu/KFBI-OS (2022)
[36] Zhou, YC; Zhao, S.; Feig, M.; Wei, GW, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213, 1, 1-30 (2006) · Zbl 1089.65117 · doi:10.1016/j.jcp.2005.07.022
[37] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals. Elsevier (2005) · Zbl 1307.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.