×

\(L^r\)-results of the stationary Navier-Stokes flows around a rotating obstacle. (English) Zbl 1527.35210

The author investigates a three-dimensional Navier-Stokes system corresponding to an incompressible flow moving past a body which rotates at a constant velocity. The author generalizes several regularity and existence results which so far have only been known in the non-rotating case.
This constant rotation introduces additional mathematical complications. The authors deals with this by a cutoff-trick decomposing the problem into one on a compact domain containing the rotating body and a problem on the whole space.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
76U05 General theory of rotating fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35D35 Strong solutions to PDEs
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Amrouche, C.; Razafison, U., On the Oseen problem in three-dimensional exterior domains, Anal. Appl. (Singap.), 4, 2, 133-162 (2006) · Zbl 1087.76023 · doi:10.1142/S0219530506000735
[2] Amrouche, C.; Rodríguez-Bellido, MA, The Oseen and Navier-Stokes equations in a non-solenoidal framework, Math. Methods Appl. Sci., 39, 17, 5066-5090 (2016) · Zbl 1356.35154 · doi:10.1002/mma.3337
[3] Borchers, W., Zur Stabilität und Faktorisierungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten (1992), Habilitationsschrift: University Paderborn, Habilitationsschrift
[4] Farwig, R., An \(L^q\)-analysis of viscous fluid flow past a rotating obstacle, Tohoku Math. J. (2), 58, 1, 129-147 (2006) · Zbl 1136.76340 · doi:10.2748/tmj/1145390210
[5] Galdi, GP, An introduction to the mathematical theory of the Navier-Stokes equations: steady-state problems (2011), New York: Springer, New York · Zbl 1245.35002 · doi:10.1007/978-0-387-09620-9
[6] Galdi, GP; Kyed, M., A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions, Proc. Am. Math. Soc., 141, 2, 573-583 (2013) · Zbl 1261.35106 · doi:10.1090/S0002-9939-2012-11638-7
[7] Galdi, GP; Kyed, M., A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions, Proc. Am. Math. Soc., 141, 4, 1313-1322 (2013) · Zbl 1260.35111 · doi:10.1090/S0002-9939-2012-11640-5
[8] Galdi, GP; Silvestre, AL, The steady motion of a Navier-Stokes liquid around a rigid body, Arch. Ration. Mech. Anal., 184, 3, 371-400 (2007) · Zbl 1111.76010 · doi:10.1007/s00205-006-0026-4
[9] Heck, H.; Kim, H.; Kozono, H., On the stationary Navier-Stokes flows around a rotating body, Manuscr. Math., 138, 3-4, 315-345 (2012) · Zbl 1241.35148 · doi:10.1007/s00229-011-0494-1
[10] Heck, H.; Kim, H.; Kozono, H., Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle, Math. Ann., 356, 653-681 (2013) · Zbl 1288.35371 · doi:10.1007/s00208-012-0861-6
[11] Hishida, T., An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal., 150, 4, 307-348 (1999) · Zbl 0949.35106 · doi:10.1007/s002050050190
[12] Kim, D.: \(L^r\)-results of the stationary Navier-Stokes equations with nonzero velocity at infinity. Submitted (2023). doi:10.22541/au.169287494.48313655/v1
[13] Kim, D., \(L^q\)-estimates for the stationary Oseen equations on the exterior of a rotating obstacle, Math. Methods Appl. Sci., 41, 12, 4506-4527 (2018) · Zbl 1398.35175 · doi:10.1002/mma.4911
[14] Kim, D., The energy equality and regularity results for the stationary Navier-Stokes equations on the exterior of a rotating obstacle, Nonlinear Anal., 181, 119-140 (2019) · Zbl 1421.35247 · doi:10.1016/j.na.2018.11.006
[15] Kim, D., \(L^3\)-solutions for the stationary Navier-Stokes equations in the exterior of a rotating obstacle, Nonlinear Anal. Real World Appl., 52, 103020 (2020) · Zbl 1433.35232 · doi:10.1016/j.nonrwa.2019.103020
[16] Kim, D.; Kim, H., \(L^q\)-estimates for the stationary Oseen equations on exterior domains, J. Differ. Equ., 257, 10, 3669-3699 (2014) · Zbl 1300.35096 · doi:10.1016/j.jde.2014.02.021
[17] Kim, D.; Kim, H., Very weak solutions of the stationary Navier-Stokes equations for an incompressible fluid past obstacles, Nonlinear Anal., 147, 145-168 (2016) · Zbl 1352.35097 · doi:10.1016/j.na.2016.08.017
[18] Kim, H., Existence and regularity of very weak solutions of the stationary Navier-Stokes equations, Arch. Ration. Mech. Anal., 193, 1, 117-152 (2009) · Zbl 1169.76017 · doi:10.1007/s00205-008-0168-7
[19] Kozono, H.; Sohr, H., New a priori estimates for the Stokes equations in exterior domains, Indiana Univ. Math. J., 40, 1, 1-27 (1991) · Zbl 0732.35068 · doi:10.1512/iumj.1991.40.40001
[20] Kozono, H.; Sohr, H., Density properties for solenoidal vector fields, with applications to the Navier-Stokes equations in exterior domains, J. Math. Soc. Jpn., 44, 2, 307-330 (1992) · Zbl 0767.35060 · doi:10.2969/jmsj/04420307
[21] Kračmar, S.; Nečasová, v., \(L^q\)-approach of weak solutions to stationary rotating Oseen equations in exterior domains, Quart. Appl. Math., 68, 3, 421-437 (2010) · Zbl 1258.76058 · doi:10.1090/S0033-569X-10-01210-4
[22] Kračmar, S., Nečasová, v., Penel, P.: \(L^q\)-approach to weak solutions of the Oseen flow around a rotating body. In: Parabolic and Navier-Stokes equations. Part 1, vol. 81, Part 1 of Banach Center Publ. Polish Acad. Sci. Inst. Math., Warsaw, pp. 259-276 (2008) · Zbl 1148.76017
[23] Silvestre, AL, On the existence of steady flows of a Navier-Stokes liquid around a moving rigid body, Math. Methods Appl. Sci., 27, 12, 1399-1409 (2004) · Zbl 1061.35078 · doi:10.1002/mma.509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.