×

On a \(p(x)\)-biharmonic problem with singular weights. (English) Zbl 1379.35117

Summary: In this work, sufficient conditions are given to prove the existence of at least one nontrivial weak solution for a \(p(x)\)-biharmonic problem involving Navier boundary conditions and singular weights.

MSC:

35J60 Nonlinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35G30 Boundary value problems for nonlinear higher-order PDEs
35J35 Variational methods for higher-order elliptic equations
Full Text: DOI

References:

[1] Antontsev, S.N., Shmarev, S.I.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515545 (2005) · Zbl 1066.35045 · doi:10.1016/j.na.2004.09.026
[2] Ayoujil, A., El Amrouss, A.: Continuous spectrum of a fourth-order nonhomogeneous elliptic equation with variable exponent. Electron. J. Differ. Equ. 24, 112 (2011) · Zbl 1227.35229
[3] Baraket, S., Rădulescu, V.: Combined effects of concave-convex nonlinearities in a fourth-order problem with variable exponent. Adv. Nonlinear Stud. 16, 409-419 (2016) · Zbl 1343.35091 · doi:10.1515/ans-2015-5032
[4] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersb. Math. J. 27, 347-379 (2016) · Zbl 1335.49057 · doi:10.1090/spmj/1392
[5] Bouslimi, M., Kefi, K.: Existence of solution for an indefinite weight quasilinear problem with variable exponent. Complex Variables Elliptic Equ. 58, 1655-1666 (2013) · Zbl 1288.35268 · doi:10.1080/17476933.2012.702421
[6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 66, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[7] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219-273 (2015) · Zbl 1325.49042 · doi:10.1007/s00205-015-0859-9
[8] Edmunds, D., Rakosnik, J.: Sobolev embeddings with variable exponent. Stud. Math. 143, 267-293 (2000) · Zbl 0974.46040
[9] El Amrous, A., Moradi, F., Moussaoui, M.: Existence of solutions for fourth-order PDEs with variable exponents. Electron. J. Differ. Equ. 153, 1-13 (2009) · Zbl 1182.35086
[10] El Amrous, A., Ourraoui, A.: Existence of solutions for a boundary value problem involving \[p(x)\] p(x)-biharmonic operator. Bol. Soc. Paran. Mater. 31, 179-192 (2013) · Zbl 1413.35193
[11] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[12] Fan, X., Han, X.: Existence and multiplicity of solutions for \[p(x)\] p(x)-Laplacian equations in \[{\mathbb{R}}^N\] RN. Nonlinear Anal. 59, 173-188 (2004) · Zbl 1134.35333
[13] Ferrero, A., Warnault, G.: On solutions of second and fourth order elliptic equations with power-type nonlinearities. Nonlinear Anal. 70, 2889-2902 (2009) · Zbl 1171.35374 · doi:10.1016/j.na.2008.12.041
[14] Ge, B., Zhou, Q.-M., Wu, Y.-H.: Eigenvalue of the \[p(x)\] p(x)-biharmonic operator with indefinite weight. Z. Angew. Math. Phys. 66, 1007-1021 (2015) · Zbl 1319.35147 · doi:10.1007/s00033-014-0465-y
[15] Halsey, T.C.: Electrorheological fluids. Science 258, 761-766 (1992) · doi:10.1126/science.258.5083.761
[16] Harjulehto, P., Hästö, P., Le, U.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551-4574 (2010) · Zbl 1188.35072 · doi:10.1016/j.na.2010.02.033
[17] Heidarkhani, S., Afrouzi, G.A., Moradi, S., Caristi, G., Ge, B.: Existence of one weak solution for \[p(x)\] p(x)-biharmonic equations with Navier boundary conditions. Z. Angew. Math. Phys.67(3), Art. 73 (2016) · Zbl 1353.35153
[18] King, J.R.: Two generalisations of the thin film equation. Math. Comput. Model. 34, 737-756 (2001) · Zbl 1001.35073 · doi:10.1016/S0895-7177(01)00095-4
[19] Kong, L.: On a fourth order elliptic problem with a \[p(x)\] p(x)-biharmonic operator. Appl. Math. Lett. 27, 21-25 (2014) · Zbl 1317.35055 · doi:10.1016/j.aml.2013.08.007
[20] Marcellini, P.: On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 391-409 (1986) · Zbl 0609.49009 · doi:10.1016/S0294-1449(16)30379-1
[21] Marcellini, P.: Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions. J. Differ. Equ. 90, 1-30 (1991) · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[22] Mashiyev, R.A., Ogras, S., Yucedag, Z., Avci, M.: Existence and multiplicity of weak solutions for nonuniformly elliptic equations with non-standard growth condition. Complex Variables Elliptic Equ. 57, 579-595 (2012) · Zbl 1277.35173 · doi:10.1080/17476933.2011.598928
[23] Mihailescu, M., Rădulescu, V.D.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135, 2929-2937 (2007) · Zbl 1146.35067 · doi:10.1090/S0002-9939-07-08815-6
[24] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200-212 (1931) · Zbl 0003.25203
[25] Rădulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336-369 (2015) · Zbl 1321.35030 · doi:10.1016/j.na.2014.11.007
[26] Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. Taylor & Francis, Chapman and Hall/CRC, Boca Raton (2015) · Zbl 1343.35003 · doi:10.1201/b18601
[27] Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000) · Zbl 0968.76531
[28] Zang, A.B., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces. Nonlinear Anal. 69, 3629-3636 (2008) · Zbl 1153.26312 · doi:10.1016/j.na.2007.10.001
[29] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 9, 33-66 (1987) · Zbl 0599.49031 · doi:10.1070/IM1987v029n01ABEH000958
[30] Zhikov, V.V.: Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. 316(5), 435-439 (1993) · Zbl 0783.35005
[31] Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3(2), 249-269 (1995) · Zbl 0910.49020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.