×

Differential geometric invariants for time-reversal symmetric Bloch-bundles: the “Real” case. (English) Zbl 1346.57024

A topological quantum system consists of a Hilbert space \(\mathcal H\) (quantum phase space), a closed manifold \(X\) (parameter space), and a continuous map \(X \ni x \mapsto H(x) = H(x)^*\) taking values in compact self-adjoint operators \(H(x) : \mathcal H \to \mathcal H\) (the \(x\)-dependent Hamiltonian). The reason for the monicker “topological” is that important physical features correspond to topological properties of the family. Perhaps the most important case is when the spectrum of the family is gapped: when there are \(m\) eigenvalues (aka energy bands) \(\lambda_1(x),\dots,\lambda_m(x)\) of \(H(x)\) that stay more than some “gap” \(C_g > 0\) away from all other eigenvalues for all values of \(x \in X\). When this happens, there is a corresponding rank-\(m\) complex vector bundle on \(X\) spanned by the corresponding eigenvectors. Topologically inequivalent vector bundles correspond to physically inequivalent systems.
As such, the classification of complex vector bundles is central in condensed matter. Fortunately, this classification is quite well studied in the mathematical literature, with all kinds of homotopy-theoretic and differential-geometric tools.
The present paper extends such analysis to the case of real (in the sense of Atiyah) vector bundles, which correspond to topological quantum systems with a time reversal symmetry. (Quaternionic vector bundles are also briefly discussed, with full details awaiting a future paper by the authors.) By definition, a time reversal symmetry for a topological quantum system consists of a complex conjugation \(C\) on \(\mathcal H\) (i.e. an antiunitary involution), an involution \(\tau\) on \(X\), and a continuous family of unitary maps \(x \mapsto J(x)\), equivariant in the sense that \(J(x)^* = CJ(\tau x) C\), and providing an equivariance for \(H\) in the sense that \(J(x)^* H(\tau x) J(x) = C H(x) C\). When such a system is gapped, the corresponding vector bundle is real (for the involution \(\tau\)).
It is hard for this reviewer to evaluate any paper from the point of view of a condensed matter theorist. But from the point of view of a mathematician, the paper is very good, and obviously achieves its two goals: to develop the (new) homotopy-theoretic and differential-geometric tools necessary to analyze topological quantum systems with time reversal symmetry, and to provide a largely self-contained presentation of all materials. In particular, the paper is written in the language of mathematics, defining physical notions in a mathematically-understandable way, but nevertheless contains brief introductions to everything from connections and Chern-Weil forms to spectral sequences, so that non-experts can follow.

MSC:

57R22 Topology of vector bundles and fiber bundles
57R56 Topological quantum field theories (aspects of differential topology)
81T45 Topological field theories in quantum mechanics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
58B05 Homotopy and topological questions for infinite-dimensional manifolds
55P91 Equivariant homotopy theory in algebraic topology
55R50 Stable classes of vector space bundles in algebraic topology and relations to \(K\)-theory
55N25 Homology with local coefficients, equivariant cohomology
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
53C80 Applications of global differential geometry to the sciences

References:

[10] Allday, C.; Puppe, V., Cohomological Methods in Transformation Groups (1993) · Zbl 0799.55001
[11] Atiyah, M. F., K-theory and reality, Q. J. Math. Oxford Ser. 2, 17, 367-386 (1966) · Zbl 0146.19101 · doi:10.1093/qmath/17.1.367
[12] Bellissard, J.; van Elst, A.; Schulz-Baldes, H., The non-commutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451 (1994) · Zbl 0824.46086 · doi:10.1063/1.530758
[13] Besse, A., Einstein Manifolds (1987) · Zbl 0613.53001
[14] Böhm, A.; Mostafazadeh, A.; Koizumi, H.; Niu, Q.; Zwanziger, J., The Geometric Phase in Quantum Systems (2003) · Zbl 1039.81003
[15] Borel, A.; Bredon, G.; Floyd, E. E.; Montgomery, D.; Palais., R., Seminar on transformation groups, with contributions, Annals of Mathematics Studies, 46 (1960) · Zbl 0091.37202
[16] Bott, R.; Tu, L. W., Differential Forms in Algebraic Topology (1982) · Zbl 0496.55001
[17] Brown, K. S., Cohomology of Groups (1982) · Zbl 0584.20036
[18] Chruściński, D.; Jamiołkowski, A., Geometric Phases in Classical and Quantum Mechanics (2004) · Zbl 1075.81002
[19] Davis, J. F.; Kirk, P., Lecture Notes in Algebraic Topology (2001) · Zbl 1018.55001
[20] De Nittis, G.; Landi, G., Generalized TKNN-equations, Adv. Theor. Math. Phys., 16, 505-547 (2012) · Zbl 1347.81085 · doi:10.4310/ATMP.2012.v16.n2.a4
[21] De Nittis, G.; Gomi, K., Classification of ‘Real’ Bloch-bundles: Topological quantum systems of type AI, J. Geom. Phys., 86, 303-338 (2014) · Zbl 1316.57019 · doi:10.1016/j.geomphys.2014.07.036
[22] De Nittis, G.; Gomi, K., Classification of ‘Quaternionic’ Bloch-bundles: Topological insulators of type AII, Commun. Math. Phys., 339, 1-55 (2015) · Zbl 1326.57047 · doi:10.1007/s00220-015-2390-0
[23] De Nittis, G. and Gomi, K., “Differential geometric invariants for time-reversal symmetric Bloch-bundles: The ‘Quaternionic’ case” (unpublished). · Zbl 1346.57024
[24] Dupont, J. L., Symplectic bundles and KR-theory, Math. Scand., 24, 27-30 (1969) · Zbl 0184.48401
[25] Fomenko, A. T.; Fuchs, D. B.; Gutenmacher, V. L., Homotopic Topology (1986) · Zbl 0615.55001
[26] Freed, D. S.; Moore, G. W., Twisted equivariant matter, Ann. Henri Poincaré, 14, 1927-2023 (2013) · Zbl 1286.81109 · doi:10.1007/s00023-013-0236-x
[27] Gomi, K., A variant of K-theory and topological T-duality for real circle bundles, Commun. Math. Phys., 334, 923-975 (2015) · Zbl 1320.19001 · doi:10.1007/s00220-014-2153-3
[28] Gracia-Bondia, J. M.; Varilly, J. C.; Figueroa, H., Elements of Noncommutative Geometry (2001) · Zbl 0958.46039
[29] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007) · Zbl 1208.65001
[30] Grauert, H., Analytische faserungen über holomorph-vollständigen räumen, Math. Ann., 135, 263-273 (1958) · Zbl 0081.07401 · doi:10.1007/BF01351803
[31] Gat, O. and Robbins, J. M., “Topology of time-invariant energy bands with adiabatic structure,” e-print . · Zbl 1375.81106
[32] Hasan, M. Z.; Kane, C. L., Colloquium: Topological insulators, Rev. Mod. Phys., 82, 3045-3067 (2010) · doi:10.1103/RevModPhys.82.3045
[33] Hatcher, A., Algebraic Topology (2002) · Zbl 1044.55001
[34] Heinzner, P.; Kutzschebauch, F., An equivariant version of Grauert’s Oka principle, Invent. Math., 119, 317-346 (1995) · Zbl 0837.32004 · doi:10.1007/BF01245185
[35] Hirsch, M. W., Differential Topology (1976) · Zbl 0356.57001
[36] Hsiang, W. Y., Cohomology Theory of Topological Transformation Groups (1975) · Zbl 0429.57011
[37] Husemoller, D., Fibre Bundles (1994)
[38] Kahn, B., Construction de classes de Chern équivariantes pour un fibré vectoriel réel, Commun. Algebra, 15, 695-711 (1987) · Zbl 0615.57012
[39] Kato, T., Perturbation Theory of Linear Operators (1995)
[40] Kennedy, R.; Guggenheim, C., \(ℤ_2\) topological order and the quantum spin Hall effect, Phys. Rev. B, 91, 245148 (2015) · doi:10.1103/PhysRevB.91.245148
[41] Kennedy, R.; Zirnbauer, M. R., \(ℤ_2\) topological order and the quantum spin Hall effect, Commun. Math. Phys., 342, 909-963 (2016) · Zbl 1346.81159 · doi:10.1007/s00220-015-2512-8
[42] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conf. Proc., 1134, 22-30 (2009) · Zbl 1180.82221 · doi:10.1063/1.3149495
[43] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry, 1963-1969 (19631969) · Zbl 1120.46027
[44] Kobayashi, S., Differential Geometry of Complex Vector Bundles, 15 (1987) · Zbl 0708.53002
[45] Krasnov, V. A., Characteristic classes of vector bundles on a real algebraic variety, Math. USSR Izv., 39, 703-730 (1992) · Zbl 0783.14037 · doi:10.1070/IM1992v039n01ABEH002223
[46] Kuchment, P., Floquet Theory for Partial Differential Equations (1993) · Zbl 0789.35002
[47] Kwun, K. W.; Tollefson, J. L., PL involutions of \(𝕊^1\) × \(𝕊^1\) × \(𝕊^1\), Trans. Am. Math. Soc., 203, 97-106 (1975) · Zbl 0321.57029 · doi:10.1090/s0002-9947-1975-0370634-1
[48] Matumoto, T., On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo, 18, 363-374 (1971) · Zbl 0232.57031
[49] May, J. P., Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, 91 (1996) · Zbl 0890.55001
[50] Milnor, J.; Stasheff, J. D., Characteristic Classes (1974) · Zbl 0298.57008
[51] Peterson, F. P., Some remarks on Chern classes, Ann. Math., 69, 414-420 (1959) · Zbl 0123.16502 · doi:10.2307/1970191
[52] Pitsch, W.; Scherer, J., Conjugation spaces and equivariant Chern classes, Bull. Belg. Math. Soc. Simon Stevin, 20, 77-90 (2013) · Zbl 1278.57034
[53] Putman, A., The Picard group of the moduli space of curves with level structures, Duke Math. J., 161, 623-674 (2012) · Zbl 1241.30015 · doi:10.1215/00127094-1548362
[54] Quillen, D., Superconnection character forms and the Cayley transform, Topology, 27, 211-238 (1988) · Zbl 0671.57013 · doi:10.1016/0040-9383(88)90040-7
[55] Schnyder, A. P.; Ryu, S.; Furusaki, A.; Ludwig, A. W. W., Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev., B 78, 195125 (2008) · doi:10.1103/PhysRevB.78.195125
[56] Spanier, E. H., Algebraic Topology (1966) · Zbl 0145.43303
[57] Steenrod, N. E., The Topology of Fibre Bundles (1951) · Zbl 0054.07103
[58] Taubes, C. H., Differential Geometry: Bundles, Connections, Metrics and Curvature (2011) · Zbl 1231.53001
[59] Thiang, G., On the K-theoretic classification of topological phases of matter, Annales Henri Poincaré, 17, 4, 757-794 (2016) · Zbl 1344.81144 · doi:10.1007/s00023-015-0418-9
[60] Thouless, D. J.; Kohmoto, M.; Nightingale, M. P.; den Nijs, M., Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405-408 (1982) · doi:10.1103/PhysRevLett.49.405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.