×

Quantum uncertainty as an intrinsic clock. (English) Zbl 1535.81152

Summary: In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom. For instance, in the semi-classical regime, while the position and momentum expectation values follow the classical trajectory, the uncertainty of a wave-packet can evolve and beat independently. We use this insight to revisit the dynamics of a 1d particle in a time-dependent harmonic well. One can solve it by considering time reparameterizations and the Virasoro group action to map the system to the harmonic oscillator with constant frequency. We prove that identifying such a simplifying time variable is naturally solved by quantizing the system and looking at the evolution of the width of a Gaussian wave-packet. We further show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet. This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrödinger equation. We conclude with a discussion of potential applications to quantum gravity and quantum cosmology.
{© 2023 IOP Publishing Ltd}

MSC:

81S07 Uncertainty relations, also entropic
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
35Q41 Time-dependent Schrödinger equations and Dirac equations
70H05 Hamilton’s equations
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
22E70 Applications of Lie groups to the sciences; explicit representations
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
37C50 Approximate trajectories (pseudotrajectories, shadowing, etc.) in smooth dynamics
80A10 Classical and relativistic thermodynamics
83C45 Quantization of the gravitational field
83F05 Relativistic cosmology

References:

[1] Lewis, H. R., Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett., 18, 510-2 (1967) · doi:10.1103/PhysRevLett.18.510
[2] Leach, P. G L., On a generalization of the Lewis invariant for the time-dependent harmonic oscillator, SIAM J. Appl. Math., 34, 496-503 (1978) · Zbl 0384.70029 · doi:10.1137/0134038
[3] Lewis, H. R.; Leach, P. G L., A direct approach to finding exact invariants for one-dimensional time-dependent classical Hamiltonians, J. Math. Phys., 23, 2371-4 (1982) · Zbl 0515.70018 · doi:10.1063/1.525329
[4] Schuch, D., Riccati and Ermakov equations in time-dependent and time-independent quantum systems, SIGMA, 4, 043 (2008) · Zbl 1154.81010 · doi:10.3842/SIGMA.2008.043
[5] Gallegos, A.; Rosu, H. C., Comment on demystifying the constancy of the Ermakov-Lewis invariant for a time-dependent oscillator, Mod. Phys. Lett. A, 33 (2018) · Zbl 1392.34032 · doi:10.1142/S0217732318750019
[6] Padmanabhan, T., Demystifying the constancy of the Ermakov-Lewis invariant for a time-dependent oscillator, Mod. Phys. Lett. A, 33 (2018) · Zbl 1383.34055 · doi:10.1142/S0217732318300057
[7] Ovsienko, V., Large coadjoint representation of Virasoro-type lie algebras and differential operators on tensor-densities (2006)
[8] Ben Achour, J.; Livine, E. R., Cosmology as a CFT_1, J. High Energy Phys., JHEP12(2019)031 (2019) · Zbl 1431.83182 · doi:10.1007/JHEP12(2019)031
[9] Ben Achour, J.; Livine, E. R., The cosmological constant from conformal transformations: Möbius invariance and Schwarzian action, Class. Quantum Grav., 37 (2020) · Zbl 1479.83226 · doi:10.1088/1361-6382/abb577
[10] Ben Achour, J.; Livine, E. R.; Mukohyama, S.; Uzan, J-P, Hidden symmetry of the static response of black holes: applications to love numbers, J. High Energy Phys., JHEP07(2022)112 (2022) · Zbl 1522.83102 · doi:10.1007/JHEP07(2022)112
[11] Berens, R.; Hui, L.; Sun, Z., Ladder symmetries of black holes and de Sitter space: love numbers and quasinormal modes, J. Cosmol. Astropart. Phys., JCAP06(2023)056 (2023) · Zbl 1528.83069 · doi:10.1088/1475-7516/2023/06/056
[12] Arickx, F.; Broeckhove, J.; Coene, W.; Leuven, P. V., Gaussian wave-packet dynamics, Int. J. Quantum Chem., 30, 471-81 (1986) · doi:10.1002/qua.560300741
[13] Prezhdo, O. V., Quantized Hamilton dynamics, Theor. Chem. Acc., 116, 206-18 (2006) · doi:10.1007/s00214-005-0032-x
[14] Baytaş, B.; Bojowald, M.; Crowe, S., Effective potentials from semiclassical truncations, Phys. Rev. A, 99 (2019) · doi:10.1103/PhysRevA.99.042114
[15] Bojowald, M., Canonical description of quantum dynamics*, J. Phys. A, 55 (2022) · Zbl 1520.81112 · doi:10.1088/1751-8121/acafb0
[16] Livine, E. R., Evolution of the wave-function’s shape in a time-dependent harmonic potential (2023)
[17] Livine, E. R., Quantizing the quantum uncertainty (2023) · Zbl 1535.81153
[18] Vilenkin, A., Approaches to quantum cosmology, Phys. Rev. D, 50, 2581-94 (1994) · doi:10.1103/PhysRevD.50.2581
[19] Bojowald, M.; Skirzewski, A., Effective equations of motion for quantum systems, Rev. Math. Phys., 18, 713-46 (2006) · Zbl 1124.82010 · doi:10.1142/S0129055X06002772
[20] Kiefer, C.; Singh, T. P., Quantum gravitational corrections to the functional Schrödinger equation, Phys. Rev. D, 44, 1067-76 (1991) · doi:10.1103/PhysRevD.44.1067
[21] Lämmerzahl, C., A Hamilton operator for quantum optics in gravitational fields, Phys. Lett. A, 203, 12-17 (1995) · Zbl 1020.81985 · doi:10.1016/0375-9601(95)00345-4
[22] Buoninfante, L.; Lambiase, G.; Petruzziello, L., Quantum interference in external gravitational fields beyond general relativity, Eur. Phys. J. C, 81, 928 (2021) · doi:10.1140/epjc/s10052-021-09740-2
[23] de Alfaro, V.; Fubini, S.; Furlan, G., Conformal invariance in quantum mechanics, Nuovo Cimento A, 34, 569 (1976) · doi:10.1007/BF02785666
[24] Padmanabhan, T., Obtaining the non-relativistic quantum mechanics from quantum field theory: issues, folklores and facts, Eur. Phys. J. C, 78, 563 (2018) · doi:10.1140/epjc/s10052-018-6039-y
[25] de Boer, J., Frontiers of quantum gravity: shared challenges, converging directions (2022)
[26] Draper, P.; Garcia, I. G.; Reece, M., Snowmass white paper: implications of quantum gravity for particle physics (2022)
[27] Faulkner, T.; Hartman, T.; Headrick, M.; Rangamani, M.; Swingle, B., Snowmass white paper: quantum information in quantum field theory and quantum gravity (2022)
[28] Carney, D.; Chen, Y.; Geraci, A.; Müller, H.; Panda, C. D.; Stamp, P. C E.; Taylor, J. M., Snowmass 2021 white paper: tabletop experiments for infrared quantum gravity (2022)
[29] Zurek, K. M., Snowmass 2021 white paper: observational signatures of quantum gravity (2022)
[30] Harlow, D., TF1 snowmass report: quantum gravity, string theory, and black holes (2022)
[31] Giddings, S. B., Gravitational dressing, soft charges and perturbative gravitational splitting, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.126001
[32] Isham, C. J., Canonical quantum gravity and the problem of time, Integrable Systems, Quantum Groups and Quantum Field Theories (Nato Science Series C), vol 409, pp 157-287 (1993) · Zbl 0831.53064
[33] Giddings, S. B.; Marolf, D.; Hartle, J. B., Observables in effective gravity, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.064018
[34] Arkani-Hamed, N., Conversations on Quantum Gravity, pp 33-61 (2021), Cambridge University Press · Zbl 1468.81005
[35] Czech, B.; Lamprou, L.; McCandlish, S.; Mosk, B.; Sully, J., A stereoscopic look into the bulk, J. High Energy Phys., JHEP07(2016)129 (2016) · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[36] Tambornino, J., Relational observables in gravity: a review, SIGMA, 8, 017 (2012) · Zbl 1242.83047 · doi:10.3842/SIGMA.2012.017
[37] Carrozza, S.; Eccles, S.; Hoehn, P. A., Edge modes as dynamical frames: charges from post-selection in generally covariant theories (2022)
[38] Goeller, C.; Hoehn, P. A.; Kirklin, J., Diffeomorphism-invariant observables and dynamical frames in gravity: reconciling bulk locality with general covariance (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.