×

A multi-scale DNN algorithm for nonlinear elliptic equations with multiple scales. (English) Zbl 1474.65445

Summary: Algorithms based on deep neural networks (DNNs) have attracted increasing attention from the scientific computing community. DNN based algorithms are easy to implement, natural for nonlinear problems, and have shown great potential to overcome the curse of dimensionality. In this work, we utilize the multi-scale DNN-based algorithm (MscaleDNN) proposed by Z. Liu et al. [Commun. Comput. Phys. 28, No. 5, 1970–2001 (2020; Zbl 1473.65348)] to solve multi-scale elliptic problems with possible nonlinearity, for example, the p-Laplacian problem. We improve the MscaleDNN algorithm by a smooth and localized activation function. Several numerical examples of multi-scale elliptic problems with separable or non-separable scales in low-dimensional and high-dimensional Euclidean spaces are used to demonstrate the effectiveness and accuracy of the MscaleDNN numerical scheme.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J66 Nonlinear boundary value problems for nonlinear elliptic equations
41A46 Approximation by arbitrary nonlinear expressions; widths and entropy
68T07 Artificial neural networks and deep learning

Citations:

Zbl 1473.65348

Software:

MscaleDNN; DGM

References:

[1] A. Abdulle and G. Vilmart. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Mathematics of Computation, 83(286):513-536, 2013. · Zbl 1282.65146
[2] J. W. Barrett and W. B. Liu. Finite element approximation of the parabolic p-Laplacian. SIAM Journal on Numerical Analysis, 31(2):413-428, 1994. · Zbl 0805.65097
[3] L. Belenki, L. Diening, and C. Kreuzer. Optimality of an adaptive finite element method for the p-laplacian equation. Ima Journal of Numerical Analysis, 32(2):484-510, 2012. · Zbl 1245.65156
[4] J. Berg and K. Nystrm. A unified deep artificial neural network approach to partial differen-tial equations in complex geometries. Neurocomputing, 317:28-41, 2018.
[5] S. Biland, V. C. Azevedo, B. Kim, and B. Solenthaler. Frequency-aware reconstruction of fluid simulations with generative networks. arXiv preprint arXiv:1912.08776, 2019.
[6] W. Cai, X. Li, and L. Liu. A phase shift deep neural network for high frequency approxima-tion and wave problems. Accepted by SISC, arXiv:1909.11759, 2019.
[7] W. Cai and Z.-Q. J. Xu. Multi-scale deep neural networks for solving high dimensional PDEs. arXiv preprint arXiv:1910.11710, 2019.
[8] S. Chaudhary, V. Srivastava, V. V. K. Srinivas Kumar, and B. Srinivasan. Web-spline-based mesh-free finite element approximation for p-Laplacian. International Journal of Computer Mathematics, 93(6):1022-1043, 2016. · Zbl 1355.65152
[9] E. T. Chung, Y. Efendiev, K. Shi, and S. Ye. A multiscale model reduction method for nonlin-ear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 12(4):619-642, 2017. · Zbl 1377.65148
[10] P. G. Ciarlet and J. T. Oden. The Finite Element Method for Elliptic Problems. 1978. · Zbl 0383.65058
[11] D. Cioranescu and P. Donato. An Introduction to Homogenization. 2000. · Zbl 0939.35001
[12] B. Cockburn and J. Shen. A hybridizable discontinuous Galerkin method for the p-Laplacian. SIAM Journal on Scientific Computing, 38(1), 2016. · Zbl 1382.65383
[13] L. Diening and F. Ettwein. Fractional estimates for non-differentiable elliptic systems with general growth. Forum Mathematicum, 20(3):523-556, 2008. · Zbl 1188.35069
[14] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. Heterogeneous multiscale methods: A review. Communications in Computational Physics, 2(3):367-450, 2007. · Zbl 1164.65496
[15] W. E, C. Ma, and L. Wu. Machine learning from a continuous viewpoint. arXiv preprint arXiv:1912.12777, 2019. · Zbl 1472.68136
[16] W. E and B. Yu. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6(1):1-12, 2018. · Zbl 1392.35306
[17] F. Feyel. Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Materials Science, 16(1):344-354, 1999.
[18] M. G. D. Geers, V. G. Kouznetsova, K. Matouš, and J. Yvonnet. Homogenization methods and multiscale modeling: Nonlinear problems. Encyclopedia of Computational Mechanics Sec-ond Edition, pages 1-34, 2017.
[19] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press, Cambridge, 2016. · Zbl 1373.68009
[20] J. Han, C. Ma, Z. Ma, and W. E. Uniformly accurate machine learning-based hydrodynamic models for kinetic equations. Proceedings of the National Academy of Sciences, 116(44):21983-21991, 2019. · Zbl 1431.76100
[21] S. O. Haykin. Neural Networks: A Comprehensive Foundation. 1998. · Zbl 0934.68076
[22] C. He, X. Hu, and L. Mu. A mesh-free method using piecewise deep neural network for elliptic interface problems. arXiv preprint arXiv:2005.04847, 2020.
[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, 2016.
[24] T. Hou and Y. Efendiev. Multiscale Finite Element Methods: Theory and Applications. 2009. · Zbl 1163.65080
[25] Y. Q. Huang, R. Li, and W. Liu. Preconditioned descent algorithms for p-Laplacian. Journal of Scientific Computing, 32(2):343-371, 2007. · Zbl 1134.65079
[26] M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen, and P. von Wurstemberger. Over-coming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. arXiv preprint arXiv:1807.01212, 2018.
[27] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis. Adaptive activation functions accel-erate convergence in deep and physics-informed neural networks. Journal of Computational Physics, 404:109136, 2020. · Zbl 1453.68165
[28] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
[29] X. Li and H. Dong. The element-free Galerkin method for the nonlinear p-Laplacian equa-tion. Computers and Mathematics With Applications, 75(7):2549-2560, 2018. · Zbl 1409.65096
[30] Z. Liu, W. Cai, and Z.-Q. J. Xu. Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains. Accepted by Communications in Compu-tational Physics, arXiv:2007.11207, 2020.
[31] A. M. Oberman. Finite difference methods for the infinity Laplace and p-Laplace equations. Journal of Computational and Applied Mathematics, 254(1):65-80, 2013. · Zbl 1290.65098
[32] H. Owhadi and L. Zhang. Homogenization of parabolic equations with a continuum of space and time scales. SIAM Journal on Numerical Analysis, 46(1):1-36, 2007. · Zbl 1170.34037
[33] H. Owhadi and L. Zhang. Numerical homogenization of the acoustic wave equations with a continuum of scales. Computer Methods in Applied Mechanics and Engineering, 198:397-406, 2008. · Zbl 1228.76122
[34] H. Owhadi, L. Zhang, and L. Berlyand. Polyharmonic homogenization, rough polyhar-monic splines and sparse super-localization. Mathematical Modelling and Numerical Analysis, 48(2):517-552, 2014. · Zbl 1296.41007
[35] S. Qian, H. Liu, C. Liu, S. Wu, and H. S. Wong. Adaptive activation functions in convolu-tional neural networks. Neurocomputing, 272:204-212, 2018.
[36] T. Qin, K. Wu, and D. Xiu. Data driven governing equations approximation using deep neural networks. Journal of Computational Physics, 395:620-635, 2019. · Zbl 1455.65125
[37] N. Rahaman, D. Arpit, A. Baratin, F. Draxler, M. Lin, F. A. Hamprecht, Y. Bengio, and A. Courville. On the spectral bias of deep neural networks. International Conference on Machine Learning, 2019.
[38] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. 1999. · Zbl 0935.62005
[39] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differ-ential equations. Journal of Computational Physics, 375:1339-1364, 2018. · Zbl 1416.65394
[40] D. Slepčev and M. Thorpe. Analysis of p-Laplacian regularization in semi-supervised learn-ing. arXiv preprint arXiv:1707.06213, 2017.
[41] C. M. Strofer, J.-L. Wu, H. Xiao, and E. Paterson. Data-driven, physics-based feature extrac-tion from fluid flow fields using convolutional neural networks. Communications in Compu-tational Physics, 25(3):625-650, 2019. · Zbl 1475.76075
[42] L. Tartar. The General Theory of Homogenization: A Personalized Introduction. 2009. · Zbl 1188.35004
[43] Z. Wang and Z. Zhang. A mesh-free method for interface problems using the deep learning approach. Journal of Computational Physics, 400:108963, 2020. · Zbl 1454.65173
[44] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao. Training behavior of deep neural network in frequency domain. International Conference on Neural Information Processing, pages 264-274, 2019.
[45] Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma. Frequency principle: Fourier analysis sheds light on deep neural networks. Accepted by Communications in Computational Physics, arXiv:1901.06523, 2019.
[46] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103-114, 2017. · Zbl 1429.68260
[47] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris. Physics-constrained deep learn-ing for high-dimensional surrogate modeling and uncertainty quantification without la-beled data. Journal of Computational Physics, 394:56-81, 2019 · Zbl 1452.68172
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.