×

On mild solutions of the p-Laplacian fractional Langevin equations with anti-periodic type boundary conditions. (English) Zbl 1524.34143

Summary: This work aims at investigating the unique existence of mild solutions of the problem for the \(p\)-Laplacian fractional Langevin equation involving generalized fractional derivatives, which are defined with respect to an appropriate function, with anti-periodic type boundary conditions. Herein, we assume that the source function of the problem may have a singularity. Under reasonable assumptions on regularity of the problem, we transform it to a non-local integral equation with the two parameters Mittag-Leffler function in kernels. Based on the integral equation, we obtain the existence and uniquesness results using the Schaefer, nonlinear Leray-Schauder alternatives and Banach fixed-point theorems. Furthermore, we also aim to study the continuity of the mild solutions with respect to perturbations in the inputs of fractional derivatives, such as fractional orders, friction constant, appropriate function and associated parameters, from which we deduce that the solution of Langevin’s equation with the fractional Hadamard derivative is the ‘limit’ of the one with the fractional Caputo-Katugampola derivative. Lastly, numerical examples are given to confirm our theoretical findings.

MSC:

34G20 Nonlinear differential equations in abstract spaces
34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34B15 Nonlinear boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
34B08 Parameter dependent boundary value problems for ordinary differential equations

Software:

GitHub; ML; Python
Full Text: DOI

References:

[1] Abdurrahman, A.; Anton, F.; Bordes, J., Half-string oscillator approach to string field theory (Ghost sector. I), Nuclear Phys. B, 397, 260-282 (1993)
[2] Ahmadova, A.; Mahmudov, N. I., Langevin differential equations with general fractional orders and their applications to electric circuit theory, J. Comput. Appl. Math., 388 (2021) · Zbl 1460.34010
[3] Ahn, C.; Rim, C., Boundary flows in general coset theories, J. Phys. A, 32, 2509-2525 (1999) · Zbl 0960.81062
[4] Akima, H., A new method of interpolation and smooth curve fitting based on local procedures, J. ACM., 17, 589-602 (1970) · Zbl 0209.46805
[5] Aldoghaither, A.; Liu, D.; Laleg-Kirati, T., Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation, SIAM J. Sci. Comput., 37, 6, A2813-A2839 (2015) · Zbl 1329.35341
[6] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460-481 (2017) · Zbl 1465.26005
[7] Arcoya, D.; Diaz, J. I.; Tello, L., S-Shaped bifurcation branch in a quasilinear multivalued model arising in climatology, J. Differ. Equ., 150, 215-225 (1998) · Zbl 0921.35198
[8] Baghani, O., On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 42, 675-681 (2017) · Zbl 1473.82025
[9] Baghani, H.; Alzabut, J.; Nieto, J. J., A coupled system of Langevin differential equations of fractional order and associated to antiperiodic boundary conditions, Math. Meth. Appl. Sci., 1-11 (2020)
[10] Benci, V.; D’Avenia, P.; Fortunato, D.; Pisani, L., Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Rational Mech. Anal., 154, 297-324 (2000) · Zbl 0973.35161
[11] Berhail, A.; Tabouche, N.; Matar, M. M.; Alzabut, J., Boundary value problem defined by system of generalized Sturm-Liouville and Langevin Hadamard fractional differential equations, Math. Meth. Appl. Sci., 1-13 (2020)
[12] Bouchaud, J. P.; Cont, R., A Langevin approach to stock market fluctuations and crashes, Eur. Phys. J. B, 6, 4, 543-550 (1998)
[13] Cheng, J.; Nakagawa, J.; Yamamoto, M.; Yamazaki, T., Uniqueness in an inverse problem for a one-dimension fractional diffusion equation, Inverse Probl., 25, 11 (2009) · Zbl 1181.35322
[14] Cichon, M.; Salem, H. A.H., On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper. Appl., 11, 1869-1895 (2020) · Zbl 1453.34004
[15] Coffey, T. W.; Kalmykov, Y. P.; Waldron, J. T., The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry, and Electrical Engineering, Singapore: World Scientific Publishing Co. Pte. Ltd, 2004 · Zbl 1098.82001
[16] D’onofrio, L.; Iwaniec, T., The p-harmonic transform beyond its natural domain of definition, Indiana Univ. Math. J., 53, 683-718 (2004) · Zbl 1081.35048
[17] Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204, 609-625 (1996) · Zbl 0881.34005
[18] Diaz, J.; de Thelin, F., On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25, 4, 1085-1111 (1994) · Zbl 0808.35066
[19] Dien, N. M., Generalized weakly singular Gronwall-type inequalities and their applications to fractional differential equations, Rocky Mountain J. Math., 51, 2, 689-707 (2021) · Zbl 1483.26010
[20] Dien, N.M., Nane, E., and Trong, D.D., The nonlinear fractional diffusion equations with Nagumo-type sources and perturbed orders, Available at arXiv:2002.06747.
[21] Dien, N. M.; Trong, D. D., Stability of solutions of a class of nonlinear fractional diffusion equations with respect to a pseudo-differential operator, Math. Method. Appl. Sci., 42, 8, 2513-2532 (2019) · Zbl 1414.35264
[22] Dien, N.M., Existence and continuity results for a nonlinear fractional Langevin equation with a weakly singular source, J. Integral Equ. Appl. Available at https://projecteuclid.org/journals/jiea/journal-of-integral-equations-and-applications/DownloadAcceptedPapers/200830-Nguyen.pdf. · Zbl 1505.34018
[23] Eab, C. H.; Lim, S. C., Fractional Langevin equations of distributed order, Phys. Rev. E, 83 (2011)
[24] Elmoataz, A.; Lezoray, O.; Bougleux, S., Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing, IEEE Trans. Image Process., 17, 7, 1047-1060 (2008)
[25] Fazli, H.; Nieto, J. J., Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals, 114, 332-337 (2018) · Zbl 1415.34016
[26] Fazli, H.; Sun, H. G.; Aghchi, S., Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math., 98, 1, 1-10 (2021) · Zbl 1498.34024
[27] Fazli, H.; Sun, H. G.; Nieto, J. J., New existence and stability results for fractional Langevin equation with three-point boundary conditions, Comput. Appl. Math., 40, 48 (2021) · Zbl 1476.34020
[28] Garrappa, R., Numerical evaluation of two and three parameter Mittag-Leffler functions, SIAM J. Numer. Anal., 53, 1350-1369 (2015) · Zbl 1331.33043
[29] Granas, A.; Dugundji, J., Fixed Point Theory (2003), Springer-Verlag Inc: Springer-Verlag Inc, New York · Zbl 1025.47002
[30] Han, J.; Lu, H.; Zhang, C., Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian, Appl. Math. Comput., 257, 526-536 (2015) · Zbl 1338.34015
[31] Herrmann, R., Fractional Calculus: An Introduction for Physicists (2014), World Scientific: World Scientific, Singapore · Zbl 1293.26001
[32] Hinch, E. J., Application of the Langevin equation to fluid suspensions, J. Fluid Mech., 72, 3, 499-511 (1975) · Zbl 0327.76044
[33] Iomin, A., Fractional evolution in quantum mechanics, Chaos Solitons Fractals X, 1 (2019)
[34] Jong, K. S., Existence and uniqueness of positive solutions of a kind of multi-point boundary value problems for nonlinear fractional differential equations with p-Laplacian operator, Mediterr. J. Math., 15, 129 (2018) · Zbl 1395.34005
[35] Jong, K. S.; Choi, H. C.; Ri, Y. H., Existence of positive solutions of a class of multi-point boundary value problems for p-Laplacian fractional differential equations with singular source terms, Commun. Nonlinear Sci. Numer. Simul., 72, 272-281 (2019) · Zbl 1464.34020
[36] Kateregga, M.; Mataramvura, S.; Taylor, D., Parameter estimation for stable distributions with application to commodity futures log-returns, Cogent. Econ. Financ., 5, 1 (2017)
[37] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 207 (2006), Elsevier: Elsevier, Amsterdam · Zbl 1092.45003
[38] Kleinert, H., Functional determinants from Wronski Green functions, J. Math. Phys., 40, 6044-6051 (1999) · Zbl 0963.34075
[39] Langevin, P., Sur la théorie du mouvement brownien [On the theory of Brownian motion], C. R. Acad. Sci. Paris, 146, 530-533 (1908) · JFM 39.0847.03
[40] Leibenson, L. S., General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSR, Ser. Biol. Nauk., 9, 7-10 (1983)
[41] Li, X.; Han, Z.; Sun, S.; Sun, L., Eigenvalue problems of fractional q-difference equations with generalized p-Laplacian, Appl. Math. Lett., 57, 46-53 (2016) · Zbl 1334.39027
[42] Liu, X.; Jia, M.; Xiang, X., On the solvability of a fractional differential equation model involving the p-Laplacian operator, Comput. Math. Appl., 64, 10, 3267-3275 (2012) · Zbl 1268.34020
[43] Liu, Z. H.; Lu, L., A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator, Electron. J. Qual. Theory Differ. Equ., 70, 1-16 (2012) · Zbl 1340.34299
[44] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publisher Inc.: Begell House Publisher Inc., Danbury, CT
[45] Matar, M. M.; Alzabut, J.; Jonnalagadda, J. M., A coupled system of nonlinear Caputo-Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Method. Appl. Sci., 44, 2650-2670 (2021) · Zbl 1472.34014
[46] Peres, Y.; Sheffield, S., Tug-of-war with noise: A game-theoretic view of the p-Laplacian, Duke Math. J., 145, 1, 91-120 (2008) · Zbl 1206.35112
[47] Pinsky, S.; Tfittmann, U., Antiperiodic boundary conditions in supersymmetric discrete light cone quantization, Phys. Rev. D, 62, 3 (2000)
[48] Python Software Foundation, Python Language Reference, version 3.7. Available at http://www.python.org.
[49] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Appl. Anal., 382, 1, 426-447 (2011) · Zbl 1219.35367
[50] Salem, A., Existence results of solutions for anti-periodic fractional Langevin equation, J. Appl. Anal. Comput., 10, 2557-2574 (2020) · Zbl 1493.34028
[51] Schluttig, J.; Alamanova, D.; Helms, V.; Schwarz, U. S., Dynamics of protein-protein encounter: a Langevin equation approach with reaction patches, J. Chem. Phys., 129, 15 (2008)
[52] Schneider, W. R., Completely monotone generalized Mittag-Leffler functions, Expo. Math., 14, 1, 3-16 (1996) · Zbl 0843.60024
[53] Sin, C. S.; Zheng, L., Existence and uniqueness of global solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal., 19, 3, 765-774 (2016) · Zbl 1345.34008
[54] Tarasov, V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (2010), Springer: Springer, Berlin · Zbl 1214.81004
[55] Trong, D. D.; Dien, N. M.; Viet, T. Q., Global solution of space-fractional diffusion equations with nonlinear reaction source terms, Appl. Anal., 99, 2709-2739 (2020)
[56] Trong, D. D.; Hai, D. N.D.; Dien, N. M., On a time-space fractional backward diffusion problem with inexact orders, Comput. Math. Appl., 78, 5, 1572-1593 (2019) · Zbl 1442.35527
[57] Trong, D. D.; Nane, E.; Minh, N. D.; Tuan, N. H., Continuity of solutions of a class of fractional equations, Potential Anal., 49, 423-478 (2018) · Zbl 1407.35205
[58] Uchaikin, V. V., Fractional Derivatives for Physicists and Engineers, 2 (2013), Springer: Springer, Berlin · Zbl 1312.26002
[59] Viet, T. Q.; Dien, N. M.; Trong, D. D., Stability of solutions of a class of nonlinear fractional Laplacian parabolic problems, J. Comput. Appl. Math., 355, 51-76 (2019) · Zbl 1419.35228
[60] Viet, T.Q., On mild solutions of the p-Laplacian fractional Langevin equations with anti-periodic type boundary conditions, Available at https://github.com/tranqv/GCOM-2021-0117.
[61] Wang, G.; Qin, J.; Zhang, L.; Baleanu, D., Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions, Chaos Solitons Fractals, 131 (2020) · Zbl 1495.34013
[62] Webb, J. R.L., Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471, 692-711 (2019) · Zbl 1404.26022
[63] Yu, T.; Deng, K.; Luo, M., Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 19, 1661-1668 (2014) · Zbl 1457.34020
[64] Zhou, H.; Alzabut, J.; Yang, L., On fractional Langevin differential equations with anti-periodic boundary conditions, Eur. Phys. J. Spec. Top., 226, 3577-3590 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.