×

Positive solutions for singular \((p,2)\)-equations. (English) Zbl 1432.35101

The authors consider the following nonlinear, nonparametric singular Dirichlet problem: \[ -\operatorname{div}(|\nabla u|^{p-2}\nabla u(z)) - \Delta u(z) = \mu(u(z)) + f(z, u(z)) \text{ in } \Omega, \ \ u|_{\partial \Omega} =0, \ p>2,\tag{P} \] where \(\Omega \subset \mathbb{R}^N\) is a bounded smooth domain, the function \(\mu(\cdot)\) is singular at \(x = 0\), \(f(z, x)\) is a Carathéodory function and of \((p-1)\)-superlinear growth with respect to \(x\) near \(+\infty\) but the so called Ambrosetti-Rabinowitz condition may fail. Under some further conditions on \(f(z, x)\), the existence of a pair of positive smooth solutions is obtained for problem (P) by combining variational methods and some truncation techniques.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J20 Variational methods for second-order elliptic equations
35J75 Singular elliptic equations
Full Text: DOI

References:

[1] Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem. Am. Math. Soc. 196(915), 70 (2008) · Zbl 1165.47041
[2] Byun, S.-S., Ko, E.: Global \[C^{1,\alpha }\] C1,α-regularity and existence of multiple solutions for singular \[p(x)\] p(x)-Laplacian equations. Calc. Var. Partial Differ. Equ. 56(76), 29 (2017) · Zbl 1375.35222
[3] Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \[p\] p&\[q\] q-Laplacian. Commun. Pure Appl. Anal. 4(1), 9-22 (2005) · Zbl 1210.35090
[4] Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis, Series Mathematics Analysis Applied, vol. 9. Chapman and Hall/CRC Press, Boca Raton (2006) · Zbl 1086.47001
[5] Gasiński, L., Papageorgiou, N.S.: Exercises in Analysis. Part 2: Nonlinear Analysis. Springer, Cham (2016) · Zbl 1351.00006 · doi:10.1007/978-3-319-27817-9
[6] Gasiński, L., Papageorgiou, N.S.: Positive solutions for the Robin \[p\] p-Laplacian problem with competing nonlinearities. Adv. Calc. Var. 12, 31-56 (2019) · Zbl 1411.35101 · doi:10.1515/acv-2016-0039
[7] Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6(1), 117-158 (2007) · Zbl 1181.35116
[8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998) · Zbl 0361.35003
[9] Ladyzhenskaya, O., Ural’tseva, N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968) · Zbl 0164.13002
[10] Lazer, A., McKenna, P.J.: On a singular nonlinear elliptic boundary value problem. Proc. Am. Math. Soc. 111, 721-730 (1991) · Zbl 0727.35057 · doi:10.1090/S0002-9939-1991-1037213-9
[11] Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203-1219 (1988) · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3
[12] Marano, S.A., Mosconi, S.J.N.: Some recent results on the Dirichlet problem for \[(p, q\] p,q)-Laplace equations. Discret. Contin. Dyn. Syst. Ser. S 11(2), 279-291 (2018) · Zbl 1374.35137
[13] Papageorgiou, N.S., Rădulescu, V.D.: Coercive and noncoercive nonlinear Neumann problems with indefinite potential. Forum Math. 28, 545-571 (2016) · Zbl 1338.35139 · doi:10.1515/forum-2014-0094
[14] Papageorgiou, N.S., Rădulescu, V.D., Repovs̆, D.D.: Pairs of positive solutions for resonant singular equations with the \[p\] p-Laplacian. Electron. J. Differ. Equ. 2017(249), 13 (2017) · Zbl 1372.35089
[15] Papageorgiou, N.S., Rădulescu, V.D., Repovs̆, D.D.: Positive solutions for nonlinear parametric singular Dirichlet problems. Bull. Math. Sci. (2018). https://doi.org/10.1007/s13373-018-0127-x · doi:10.1007/s13373-018-0127-x
[16] Papageorgiou, N.S., Rădulescu, V.D., Repovs̆, D.D.: Double phase problems with reaction of arbitrary growth. Z. Angew. Math. Phys. 69, 108 (2018) · Zbl 1404.35214 · doi:10.1007/s00033-018-1001-2
[17] Papageorgiou, N.S., Smyrlis, G.: A bifurcation-type theorem for singular nonlinear elliptic equations. Methods Appl. Anal. 22(2), 147-170 (2015) · Zbl 1323.35042
[18] Papageorgiou, N.S., Vetro, C., Vetro, F.: Parametric nonlinear singular Dirichlet problems. Nonlinear Anal. Real World Appl. 45, 239-254 (2019) · Zbl 1421.35176 · doi:10.1016/j.nonrwa.2018.07.006
[19] Papageorgiou, N.S., Winkert, P.: Singular \[p\] p-Laplacian equations with superlinear perturbation. J. Differ. Equ. 266, 1462-1487 (2019) · Zbl 1417.35050 · doi:10.1016/j.jde.2018.08.002
[20] Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser Verlag, Basel (2007) · Zbl 1134.35001
[21] Saoudi, K.: Existence and nonexistence of solutions for a singular problem with variable potentials. Electron. J. Differ. Equ. 291, 9 (2017) · Zbl 1386.35076
[22] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv. 29, 33-66 (1987) · Zbl 0599.49031 · doi:10.1070/IM1987v029n01ABEH000958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.