×

\(L^{\infty }\) estimates of solution for \(m\)-Laplacian parabolic equation with a nonlocal term. (English) Zbl 1249.35177

Summary: In this paper, we consider the global existence, uniqueness and \(L^{\infty }\) estimates of weak solutions to quasilinear parabolic equation of \(m\)-Laplacian type \(u_{t}-\operatorname {div}(| \nabla u| ^{m-2}\nabla u)=u| u| ^{\beta -1}\int _{\Omega } | u| ^{\alpha }\, dx\) in \(\Omega \times (0,\infty )\) with zero Dirichlet boundary condition in \(\partial \Omega \). Further, we obtain the \(L^{\infty }\) estimate of the solution \(u(t)\) and \(\nabla u(t)\) for \(t>0\) with the initial data \(u_0\in L^{q}(\Omega )\) \((q>1)\), and the case \(\alpha +\beta < m-1\).

MSC:

35K65 Degenerate parabolic equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian

References:

[1] J. Bebernes, A. Bressan: Thermal behavior for a confined reactive gas. J. Diff. Equ. 44 (1982), 118–133. · Zbl 0489.45013 · doi:10.1016/0022-0396(82)90028-6
[2] C. S. Chen, M. Nakao and Y. Ohara: Global existence and gradient estimates for quasilinear parabalic equations of the m-Laplacian type with a strong perturbation. Differ. Integral Equ. 14 (2001), 59–74. · Zbl 1161.35316
[3] C. S. Chen: L estimates of solution for the m-Laplacian equation with initial value in L q({\(\Omega\)}). Nonlinear Analysis 48 (2002), 607–616. · Zbl 1002.35118 · doi:10.1016/S0362-546X(00)00194-2
[4] C. S. Chen: On global attractor for m-Laplacian parabolic equation with local and nonlocal nonlinearity. J. Math. Anal. Appl. 337 (2008), 318–332. · Zbl 1132.35016 · doi:10.1016/j.jmaa.2007.03.093
[5] W.A. Day: A decreasing property of solutions of parabolic equations with applications to thermoelasticity. Quart. Appl. Math. 40 (1983), 468–475. · Zbl 0514.35038
[6] E. Dibendetto: Degenerate Parabolic Equations. Springer-Verlag, Berlin, 1993.
[7] H. Engler, B. Kawohl and S. Luckhaus: Gradient estimates for solution of parabolic equations and systems. J. Math. Anal. Appl. 147 (1990), 309–329. · Zbl 0708.35018 · doi:10.1016/0022-247X(90)90350-O
[8] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uraltseva: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, RI, 1969.
[9] F.C. Li, C.H. Xie: Global and blow-up solutions to a p-Laplacian equation with nonlocal source. Computers Math. Appl. 46 (2003), 1525–1533. · Zbl 1060.35055 · doi:10.1016/S0898-1221(03)90188-X
[10] J. L. Lions: Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris, 1969.
[11] M. Nakao, C. S. Chen: Global existence and gradient estimates for quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term. J. Diff. Equ. 162 (2000), 224–250. · Zbl 0959.35103 · doi:10.1006/jdeq.1999.3694
[12] Y. Ohara: L estimates of solutions of some nonlinear degenerate parabolic equations. Nonlinear Anal. TMA 18 (1992), 413–426. · Zbl 0768.35052 · doi:10.1016/0362-546X(92)90010-C
[13] Y. Ohara: Gradient estimates for some quasilinear parabolic equations with nonmonotonic perturbations. Adv. math. Sci. Appl. 6 (1996), 531–540. · Zbl 0865.35018
[14] P. Rouchon: Universal bounds for global solutions of a diffusion equation with a nonlocal reaction term. J. Diff. Equ. 193 (2003), 75–94. · Zbl 1035.35014 · doi:10.1016/S0022-0396(03)00039-1
[15] R. Temam: Infinite-Dimensional Dynamical in Mechanics and Physics. Springer-Verlag, New York, 1997. · Zbl 0871.35001
[16] L. Veron: Coércivité et proprietes regularisantes des semigroups nonlineaires dans les espaces de Banach. Faculté des Sciences et Techniques, Université François Rabelais-tours, France, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.