×

A review on computer model calibration. (English) Zbl 07912694

MSC:

62-08 Computational methods for problems pertaining to statistics

References:

[1] Alkema, L., Raftery, A. E., & Clark, S. J. (2007). Probabilistic projections of hiv prevalence using Bayesian melding. The Annals of Applied Statistics, 1(1), 229-248. · Zbl 1129.62098
[2] Allaire, D., He, Q., Deyst, J., & Willcox, K. (2012). An information‐theoretic metric of system complexity with application to engineering system design. Journal of Mechanical Design, 134(10), 100906.
[3] Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data‐based analysis, modelling and forecasting of the COVID‐19 outbreak. PLoS One, 15(3), e0230405.
[4] Andrianakis, I., McCreesh, N., Vernon, I., McKinley, T. J., Oakley, J. E., Nsubuga, R. N., Goldstein, M., & White, R. G. (2017). Efficient history matching of a high dimensional individual‐based hiv transmission model. SIAM/ASA Journal on Uncertainty Quantification, 5(1), 694-719. · Zbl 1387.62111
[5] Andrianakis, I., Vernon, I. R., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga, R. N., Goldstein, M., & White, R. G. (2015). Bayesian history matching of complex infectious disease models using emulation: A tutorial and a case study on hiv in Uganda. PLoS Computational Biology, 11(1), e1003968.
[6] Arendt, P. D., Apley, D. W., & Chen, W. (2012). Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. Journal of Mechanical Design, 134(10), 100908.
[7] Arendt, P. D., Apley, D. W., & Chen, W. (2016). A preposterior analysis to predict identifiability in the experimental calibration of computer models. IIE Transactions, 48(1), 75-88.
[8] Arendt, P. D., Apley, D. W., Chen, W., Lamb, D., & Gorsich, D. (2012). Improving identifiability in model calibration using multiple responses. Journal of Mechanical Design, 134(10), 100909.
[9] Atamturktur, S., Hegenderfer, J., Williams, B., Egeberg, M., Lebensohn, R., & Unal, C. (2015). A resource allocation framework for experiment‐based validation of numerical models. Mechanics of Advanced Materials and Structures, 22(8), 641-654.
[10] Baker, E., Barbillon, P., Fadikar, A., Gramacy, R. B., Herbei, R., Higdon, D., Huang, J., Johnson, L. R., Ma, P., Mondal, A., Pires, B., Sacks, J., & Sokolov, V. (2022). Analyzing stochastic computer models: A review with opportunities. Statistical Science, 37(1), 64-89. · Zbl 07474198
[11] Bayarri, M., Walsh, D., Berger, J. O., Cafeo, J., Garcia‐Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo, R., & Sacks, J. (2007). Computer model validation with functional output. The Annals of Statistics, 35(5), 1874-1906. · Zbl 1144.62368
[12] Bayarri, M. J., Berger, J. O., Kennedy, M. C., Kottas, A., Paulo, R., Sacks, J., Cafeo, J. A., Lin, C.‐H., & Tu, J. (2009). Predicting vehicle crashworthiness: Validation of computer models for functional and hierarchical data. Journal of the American Statistical Association, 104(487), 929-943. · Zbl 1388.62382
[13] Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., Lin, C.‐H., & Tu, J. (2007). A framework for validation of computer models. Technometrics, 49(2), 138-154.
[14] Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer Science & Business Media.
[15] Binois, M., Gramacy, R. B., & Ludkovski, M. (2018). Practical heteroscedastic Gaussian process modeling for large simulation experiments. Journal of Computational and Graphical Statistics, 27(4), 808-821. · Zbl 07498993
[16] Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877.
[17] Boukouvalas, A., Sykes, P., Cornford, D., & Maruri‐Aguilar, H. (2014). Bayesian precalibration of a large stochastic microsimulation model. IEEE Transactions on Intelligent Transportation Systems, 15(3), 1337-1347.
[18] Box, G. E. P., & Hunter, W. G. (1962). A useful method for model‐building. Technometrics, 4(3), 301-318.
[19] Brown, D. A., & Atamturktur, S. (2018). Nonparametric functional calibration of computer models. Statistica Sinica, 28(2), 721-742. · Zbl 1390.62044
[20] Brynjarsdóttir, J., & O’Hagan, A. (2014). Learning about physical parameters: The importance of model discrepancy. Inverse Problems, 30(11), 114007. · Zbl 1307.60042
[21] Bui, T., Hernández‐Lobato, D., Hernandez‐Lobato, J., Li, Y., & Turner, R. (2016). Deep Gaussian processes for regression using approximate expectation propagation. In M.‐F.Balcan (ed.) & K. Q.Weinberger (ed.) (Eds.), Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (Vol. 48, pp. 1472-1481). PMLR.
[22] Cai, G., & Mahadevan, S. (2017). Model calibration with big data. In Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 (pp. 315-322). Springer.
[23] Campbell, K. (2006). Statistical calibration of computer simulations. Reliability Engineering & System Safety, 91(10-11), 1358-1363.
[24] Cao, F., Ba, S., Brenneman, W. A., & Joseph, V. R. (2018). Model calibration with censored data. Technometrics, 60(2), 255-262.
[25] Carlin, B. P., & Louis, T. A. (2000). Empirical Bayes: Past, present and future. Journal of the American Statistical Association, 95(452), 1286-1289. · Zbl 1072.62511
[26] Carmassi, M. (2018). CaliCo: Code calibration in a Bayesian framework. R package version 0.1.1.
[27] Chang, C.‐J., & Joseph, V. R. (2014). Model calibration through minimal adjustments. Technometrics, 56(4), 474-482.
[28] Chang, K.‐L., & Guillas, S. (2019). Computer model calibration with large non‐stationary spatial outputs: Application to the calibration of a climate model. Journal of the Royal Statistical Society: Series C, 68(1), 51-78.
[29] Chen, J., Mak, S., Joseph, V. R., & Zhang, C. (2022). Adaptive design for Gaussian process regression under censoring. The Annals of Applied Statistics, 16(2), 744-764. · Zbl 1498.62153
[30] Cheng, S., Konomi, B. A., Matthews, J. L., Karagiannis, G., & Kang, E. L. (2021). Hierarchical Bayesian nearest neighbor co‐kriging Gaussian process models; an application to intersatellite calibration. Spatial Statistics, 44, 100516.
[31] Chipman, H. A., George, E. I., & McCulloch, R. E. (1998). Bayesian CART model search. Journal of the American Statistical Association, 93(443), 935-948.
[32] Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1), 266-298. · Zbl 1189.62066
[33] Conti, S., & O’Hagan, A. (2010). Bayesian emulation of complex multi‐output and dynamic computer models. Journal of Statistical Planning and Inference, 140(3), 640-651. · Zbl 1177.62033
[34] Cox, D. D., Park, J. S., Sacks, J., & Singer, C. E. (1992). Tuning complex computer code to data. In Proceedings of the 23rd Symposium on the Interface of Computing Science and Statistics, April 21st-24th, 1991, Seattle (pp. 266-271). Interface Foundation.
[35] Craig, P., Goldstein, M., Seheult, A. H., & Smith, J. A. (1996). Bayes linear strategies for matching hydrocarbon reservoir history. Bayesian Statistics, 14, 69-95.
[36] Craig, P. S., Goldstein, M., Rougier, J. C., & Seheult, A. H. (2001). Bayesian forecasting using large computer models. Journal of the American Statistical Association, 96(454), 717-729. · Zbl 1017.62019
[37] Cutajar, K., Bonilla, E. V., Michiardi, P., & Filippone, M. (2017). Random feature expansions for deep Gaussian processes. In D.Precup (ed.) & Y. W.Teh (ed.) (Eds.), Proceedings of the 34th International Conference on Machine Learning (Vol. 70, pp. 884-893). PMLR.
[38] Damianou, A., & Lawrence, N. D. (2013). Deep Gaussian processes. In C. M.Carvalho (ed.) & P.Ravikumar (ed.) (Eds.), Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics (Vol. 31, pp. 207-215). PMLR.
[39] Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). Hierarchical nearest‐neighbor Gaussian process models for large geostatistical datasets. Journal of the American Statistical Association, 111(514), 800-812.
[40] Ding, L., Tuo, R., & Shahrampour, S. (2023). A sparse expansion for deep Gaussian processes. IISE Transactions. (In press). https://doi.org/10.1080/24725854.2023.2210629 · doi:10.1080/24725854.2023.2210629
[41] Ezzat, A. A., Pourhabib, A., & Ding, Y. (2018). Sequential design for functional calibration of computer models. Technometrics, 60(3), 286-296.
[42] Fang, K.‐T., Li, R., & Sudjianto, A. (2005). Design and modeling for computer experiments. CRC Press.
[43] Farah, M., Birrell, P., Conti, S., & Angelis, D. D. (2014). Bayesian emulation and calibration of a dynamic epidemic model for A/H1N1 influenza. Journal of the American Statistical Association, 109(508), 1398-1411.
[44] Feeley, R., Frenklach, M., Onsum, M., Russi, T., Arkin, A., & Packard, A. (2006). Model discrimination using data collaboration. The Journal of Physical Chemistry A, 110(21), 6803-6813.
[45] Feeley, R., Seiler, P., Packard, A., & Frenklach, M. (2004). Consistency of a reaction dataset. The Journal of Physical Chemistry A, 108(44), 9573-9583.
[46] Finley, A. O., Datta, A., Cook, B. D., Morton, D. C., Andersen, H. E., & Banerjee, S. (2019). Efficient algorithms for Bayesian nearest neighbor Gaussian processes. Journal of Computational and Graphical Statistics, 28(2), 401-414. · Zbl 07499062
[47] Forest, C. E., Sansó, B., & Zantedeschi, D. (2008). Inferring climate system properties using a computer model. Bayesian Analysis, 3(1), 1-37. · Zbl 1330.86029
[48] Frenklach, M., Packard, A., Garcia‐Donato, G., Paulo, R., & Sacks, J. (2016). Comparison of statistical and deterministic frameworks of uncertainty quantification. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 875-901. · Zbl 1356.62037
[49] Frenklach, M., Packard, A., & Seiler, P. (2002). Prediction uncertainty from models and data. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) (Vol. 5, pp. 4135-4140). IEEE.
[50] Frenklach, M., Packard, A., Seiler, P., & Feeley, R. (2004). Collaborative data processing in developing predictive models of complex reaction systems. International Journal of Chemical Kinetics, 36(1), 57-66.
[51] Fricker, T. E., Oakley, J. E., & Urban, N. M. (2013). Multivariate Gaussian process emulators with nonseparable covariance structures. Technometrics, 55(1), 47-56.
[52] Fuentes, M., & Raftery, A. E. (2005). Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics, 61(1), 36-45. · Zbl 1077.62124
[53] Furrer, R., Genton, M. G., & Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15(3), 502-523.
[54] Gattiker, J., Higdon, D., Keller‐McNulty, S., McKay, M., Moore, L., & Williams, B. (2006). Combining experimental data and computer simulations, with an application to flyer plate experiments. Bayesian Analysis, 1(4), 765-792. · Zbl 1331.62508
[55] Gelfand, A. E., Schmidt, A. M., Banerjee, S., & Sirmans, C. F. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. Test, 13, 263-312. · Zbl 1069.62074
[56] Generale, A. P., Hall, R. B., Brockman, R. A., Joseph, V. R., Jefferson, G., Zawada, L., Pierce, J., & Kalidindi, S. R. (2022). Bayesian calibration of continuum damage model parameters for an oxide-oxide ceramic matrix composite using inhomogeneous experimental data. Mechanics of Materials, 175, 104487.
[57] Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in practice. CRC Press.
[58] Goh, J., Bingham, D., Holloway, J. P., Grosskopf, M. J., Kuranz, C. C., & Rutter, E. (2013). Prediction and computer model calibration using outputs from multifidelity simulators. Technometrics, 55(4), 501-512.
[59] Goldberg, P. W., Williams, C. K., & Bishop, C. M. (1998). Regression with input‐dependent noise: A Gaussian process treatment. In Advances in neural information processing systems (pp. 493-499). MIT Press.
[60] Gramacy, R. B. (2016). laGP: Large‐scale spatial modeling via local approximate Gaussian processes in R. Journal of Statistical Software, 72(1), 1-46.
[61] Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. CRC Press.
[62] Gramacy, R. B., & Apley, D. W. (2015). Local Gaussian process approximation for large computer experiments. Journal of Computational and Graphical Statistics, 24(2), 561-578.
[63] Gramacy, R. B., Bingham, D., Holloway, J. P., Grosskopf, M. J., Kuranz, C. C., Rutter, E., Trantham, M., & Drake, R. P. (2015). Calibrating a large computer experiment simulating radiative shock hydrodynamics. The Annals of Applied Statistics, 9(3), 1141-1168. · Zbl 1454.62530
[64] Grosskopf, M., Bingham, D., Adams, M. L., Hawkins, W. D., & Perez‐Nunez, D. (2021). Generalized computer model calibration for radiation transport simulation. Technometrics, 63(1), 27-39.
[65] Gu, C. (2013). Smoothing spline ANOVA models. Springer. · Zbl 1269.62040
[66] Gu, M. (2023). RobustCalibration: Robust calibration of imperfect mathematical models. R package version 0.5.4.
[67] Gu, M., Anderson, K., & McPhillips, E. (2023). Calibration of imperfect geophysical models by multiple satellite interferograms with measurement bias. Technometrics, 65, 453-464.
[68] Gu, M., & Berger, J. O. (2016). Parallel partial Gaussian process emulation for computer models with massive output. The Annals of Applied Statistics, 10(3), 1317-1347. · Zbl 1391.62184
[69] Gu, M., & Wang, L. (2018). Scaled Gaussian stochastic process for computer model calibration and prediction. SIAM/ASA Journal on Uncertainty Quantification, 6(4), 1555-1583. · Zbl 1409.62185
[70] Gu, M., Xie, F., & Wang, L. (2022). A theoretical framework of the scaled Gaussian stochastic process in prediction and calibration. SIAM/ASA Journal on Uncertainty Quantification, 10(4), 1435-1460. · Zbl 1498.62016
[71] Han, G., Santner, T. J., & Rawlinson, J. J. (2009). Simultaneous determination of tuning and calibration parameters for computer experiments. Technometrics, 51(4), 464-474.
[72] Hankin, R. K. S. (2005). Introducing BACCO, an R bundle for Bayesian analysis of computer code output. Journal of Statistical Software, 14(16), 1-21.
[73] Henderson, D. A., Boys, R. J., Krishnan, K. J., Lawless, C., & Wilkinson, D. J. (2009). Bayesian emulation and calibration of a stochastic computer model of mitochondrial dna deletions in substantia nigra neurons. Journal of the American Statistical Association, 104(485), 76-87. · Zbl 1388.92007
[74] Higdon, D., Gattiker, J., Lawrence, E., Jackson, C., Tobis, M., Pratola, M., Habib, S., Heitmann, K., & Price, S. (2013). Computer model calibration using the ensemble Kalman filter. Technometrics, 55(4), 488-500.
[75] Higdon, D., Gattiker, J., Williams, B., & Rightley, M. (2008). Computer model calibration using high‐dimensional output. Journal of the American Statistical Association, 103(482), 570-583. · Zbl 1469.62414
[76] Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., & Ryne, R. D. (2004). Combining field data and computer simulations for calibration and prediction. SIAM Journal on Scientific Computing, 26(2), 448-466. · Zbl 1072.62018
[77] Higdon, D., McDonnell, J. D., Schunck, N., Sarich, J., & Wild, S. M. (2015). A Bayesian approach for parameter estimation and prediction using a computationally intensive model. Journal of Physics G: Nuclear and Particle Physics, 42(3), 034009.
[78] Huang, J., & Gramacy, R. B. (2022). Multi‐output calibration of a honeycomb seal via on‐site surrogates. Technometrics, 64(4), 548-563.
[79] Huang, J., Gramacy, R. B., Binois, M., & Libraschi, M. (2020). On‐site surrogates for large‐scale calibration. Applied Stochastic Models in Business and Industry, 36(2), 283-304. · Zbl 07885141
[80] Jiang, Z., Arendt, P. D., Apley, D. W., & Chen, W. (2016). Multi‐response approach to improving identifiability in model calibration. In R.Ghanem (ed.), D.Higdon (ed.), & H.Owhadi (ed.) (Eds.), Handbook of uncertainty quantification (pp. 69-127). Springer.
[81] Joseph, V. R., & Melkote, S. N. (2009). Statistical adjustments to engineering models. Journal of Quality Technology, 41(4), 362-375.
[82] Joseph, V. R., & Yan, H. (2015). Engineering‐driven statistical adjustment and calibration. Technometrics, 57(2), 257-267.
[83] Karagiannis, G., Konomi, B. A., & Lin, G. (2019). On the Bayesian calibration of expensive computer models with input dependent parameters. Spatial Statistics, 34, 100258.
[84] Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics‐informed machine learning. Nature Reviews Physics, 3(6), 422-440.
[85] Katzfuss, M., & Guinness, J. (2021). A general framework for Vecchia approximations of Gaussian processes. Statistical Science, 36(1), 124-141. · Zbl 07368223
[86] Kejzlar, V., & Maiti, T. (2023). Variational inference with vine copulas: An efficient approach for Bayesian computer model calibration. Statistics and Computing, 33(1), 18. · Zbl 1502.62017
[87] Kejzlar, V., Neufcourt, L., Nazarewicz, W., & Reinhard, P.‐G. (2020). Statistical aspects of nuclear mass models. Journal of Physics G: Nuclear and Particle Physics, 47(9), 094001.
[88] Kejzlar, V., Son, M., Bhattacharya, S., & Maiti, T. (2021). A fast and calibrated computer model emulator: An empirical Bayes approach. Statistics and Computing, 31(49), 1-26. · Zbl 1475.62042
[89] Kenett, R. S., & Bortman, J. (2022). The digital twin in Industry 4.0: A wide‐angle perspective. Quality and Reliability Engineering International, 38(3), 1357-1366.
[90] Kennedy, M. C., & O’Hagan, A. (2000). Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1), 1-13. · Zbl 0974.62024
[91] Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B, 63(3), 425-464. · Zbl 1007.62021
[92] King, G. B., Lovell, A. E., Neufcourt, L., & Nunes, F. M. (2019). Direct comparison between Bayesian and frequentist uncertainty quantification for nuclear reactions. Physical Review Letters, 122(23), 232502.
[93] Koermer, S., Loda, J., Noble, A., & Gramacy, R. B. (2023). Active learning for simulator calibration. arXiv preprint arXiv:2301.10228.
[94] Konomi, B. A., Karagiannis, G., Lai, K., & Lin, G. (2017). Bayesian treed calibration: An application to carbon capture with ax sorbent. Journal of the American Statistical Association, 112(517), 37-53.
[95] Krishna, A., Joseph, V. R., Ba, S., Brenneman, W. A., & Myers, W. R. (2022). Robust experimental designs for model calibration. Journal of Quality Technology, 54(4), 441-452.
[96] Kullback, S. (1997). Information theory and statistics. Courier Corporation. · Zbl 0897.62003
[97] Larssen, T., Huseby, R. B., Cosby, B. J., Høst, G., Høgåsen, T., & Aldrin, M. (2006). Forecasting acidification effects using a Bayesian calibration and uncertainty propagation approach. Environmental Science & Technology, 40(24), 7841-7847.
[98] Leatherman, E. R., Dean, A. M., & Santner, T. J. (2017). Designing combined physical and computer experiments to maximize prediction accuracy. Computational Statistics & Data Analysis, 113, 346-362. · Zbl 1464.62114
[99] Lee, B. S., Haran, M., Fuller, R. W., Pollard, D., & Keller, K. (2020). A fast particle‐based approach for calibrating a 3‐D model of the Antarctic ice sheet. The Annals of Applied Statistics, 14(2), 605-634. · Zbl 1446.62298
[100] Liu, C. K., & Negrut, D. (2021). The role of physics‐based simulators in robotics. Annual Review of Control, Robotics, and Autonomous Systems, 4, 35-58.
[101] Liu, F., Bayarri, M. J., & Berger, J. O. (2009). Modularization in Bayesian analysis, with emphasis on analysis of computer models. Bayesian Analysis, 4(1), 119-150. · Zbl 1330.65033
[102] Liu, H., Ong, Y.‐S., Shen, X., & Cai, J. (2020). When Gaussian process meets big data: A review of scalable GPS. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4405-4423.
[103] Liyanage, D., Ji, Y., Everett, D., Heffernan, M., Heinz, U., Mak, S., & Paquet, J.‐F. (2022). Efficient emulation of relativistic heavy ion collisions with transfer learning. Physical Review C, 105(3), 034910.
[104] Lv, S., Yu, J., Wang, Y., & Du, J. (2023). Fast calibration for computer models with massive physical observations. SIAM/ASA Journal on Uncertainty Quantification, 11(3), 1069-1104. · Zbl 1538.62360
[105] Ma, P., Mondal, A., Konomi, B. A., Hobbs, J., Song, J. J., & Kang, E. L. (2022). Computer model emulation with high‐dimensional functional output in large‐scale observing system uncertainty experiments. Technometrics, 64(1), 65-79.
[106] Mahnken, R. (2017). Identification of material parameters for constitutive equations. In Encyclopedia of computational mechanics (2nd ed., pp. 1-21). American Cancer Society.
[107] Mak, S., Sung, C.‐L., Wang, X., Yeh, S.‐T., Chang, Y.‐H., Joseph, V. R., Yang, V., & Wu, C. F. J. (2018). An efficient surrogate model for emulation and physics extraction of large eddy simulations. Journal of the American Statistical Association, 113(524), 1443-1456. · Zbl 1409.62258
[108] Marmin, S., & Filippone, M. (2022). Deep Gaussian processes for calibration of computer models (with discussion). Bayesian Analysis, 17(4), 1301-1350. · Zbl 1531.62018
[109] McCullagh, P., & Nelder, J. A. (2019). Generalized linear models (2nd ed.). Routledge.
[110] McFarland, J., Mahadevan, S., Romero, V., & Swiler, L. (2008). Calibration and uncertainty analysis for computer simulations with multivariate output. AIAA Journal, 46(5), 1253-1265.
[111] McKinley, T. J., Vernon, I., Andrianakis, I., McCreesh, N., Oakley, J. E., Nsubuga, R. N., Goldstein, M., & White, R. G. (2018). Approximate Bayesian computation and simulation‐based inference for complex stochastic epidemic models. Statistical Science, 33(1), 4-18. · Zbl 1407.62406
[112] Morris, M. D., & Mitchell, T. J. (1995). Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43(3), 381-402. · Zbl 0813.62065
[113] Oakley, J. E., & Youngman, B. D. (2017). Calibration of stochastic computer simulators using likelihood emulation. Technometrics, 59(1), 80-92.
[114] Paulo, R., Garca‐Donato, G., & Palomo, J. (2012). Calibration of computer models with multivariate output. Computational Statistics & Data Analysis, 56(12), 3959-3974. · Zbl 1255.62187
[115] Plumlee, M. (2017). Bayesian calibration of inexact computer models. Journal of the American Statistical Association, 112(519), 1274-1285.
[116] Plumlee, M. (2019). Computer model calibration with confidence and consistency. Journal of the Royal Statistical Society Series B: Statistical Methodology, 81(3), 519-545. · Zbl 1420.62289
[117] Plumlee, M., & Joseph, V. R. (2018). Orthogonal Gaussian process models. Statistica Sinica, 28(2), 601-619. · Zbl 1390.62047
[118] Plumlee, M., Joseph, V. R., & Yang, H. (2016). Calibrating functional parameters in the ion channel models of cardiac cells. Journal of the American Statistical Association, 111(514), 500-509.
[119] Poole, D., & Raftery, A. E. (2000). Inference for deterministic simulation models: The Bayesian melding approach. Journal of the American Statistical Association, 95(452), 1244-1255. · Zbl 1072.62544
[120] Pourhabib, A., Huang, J. Z., Wang, K., Zhang, C., Wang, B., & Ding, Y. (2015). Modulus prediction of buckypaper based on multi‐fidelity analysis involving latent variables. IIE Transactions, 47(2), 141-152.
[121] Pratola, M. T., & Chkrebtii, O. (2018). Bayesian calibration of multistate stochastic simulators. Statistica Sinica, 28(2), 693-719. · Zbl 1390.62034
[122] Pratola, M. T., & Higdon, D. M. (2016). Bayesian additive regression tree calibration of complex high‐dimensional computer models. Technometrics, 58(2), 166-179.
[123] Pratola, M. T., Sain, S. R., Bingham, D., Wiltberger, M., & Rigler, E. J. (2013). Fast sequential computer model calibration of large nonstationary spatial‐temporal processes. Technometrics, 55(2), 232-242.
[124] Pritchard, J. K., Seielstad, M. T., Perez‐Lezaun, A., & Feldman, M. W. (1999). Population growth of human y chromosomes: A study of y chromosome microsatellites. Molecular Biology and Evolution, 16(12), 1791-1798.
[125] Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88-91.
[126] Qian, P. Z. G., & Wu, C. F. J. (2008). Bayesian hierarchical modeling for integrating low‐accuracy and high‐accuracy experiments. Technometrics, 50(2), 192-204.
[127] Quiñonero‐Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6(December), 1939-1959. · Zbl 1222.68282
[128] Radtke, P. J., Burk, T. E., & Bolstad, P. V. (2002). Bayesian melding of a forest ecosystem model with correlated inputs. Forest Science, 48(4), 701-711.
[129] Raftery, A. E., Givens, G. H., & Zeh, J. E. (1995). Inference from a deterministic population dynamics model for bowhead whales. Journal of the American Statistical Association, 90(430), 402-416. · Zbl 0925.62473
[130] Ranjan, P., Lu, W., Bingham, D., Reese, S., Williams, B. J., Chou, C.‐C., Doss, F., Grosskopf, M., & Holloway, J. P. (2011). Follow‐up experimental designs for computer models and physical processes. Journal of Statistical Theory and Practice, 5(1), 119-136.
[131] Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. MIT Press. · Zbl 1177.68165
[132] Romanowicz, R., Beven, K., & Tawn, J. A. (1994). Evaluation of predictive uncertainty in nonlinear hydrological models using a Bayesian approach. In V.Barnett (ed.) & K. F.Turkman (ed.) (Eds.), Statistics for the environment 2: Water related issues (pp. 297-317). Wiley.
[133] Rougier, J. (2008). Efficient emulators for multivariate deterministic functions. Journal of Computational and Graphical Statistics, 17(4), 827-843.
[134] Rumsey, K. N., & Huerta, G. (2021). Fast matrix algebra for Bayesian model calibration. Journal of Statistical Computation and Simulation, 91(7), 1331-1341. · Zbl 07493353
[135] Russi, T., Packard, A., Feeley, R., & Frenklach, M. (2008). Sensitivity analysis of uncertainty in model prediction. The Journal of Physical Chemistry A, 112(12), 2579-2588.
[136] Russi, T., Packard, A., & Frenklach, M. (2010). Uncertainty quantification: Making predictions of complex reaction systems reliable. Chemical Physics Letters, 499(1-3), 1-8.
[137] Rutter, C. M., Ozik, J., DeYoreo, M., & Collier, N. (2019). Microsimulation model calibration using incremental mixture approximate Bayesian computation. The Annals of Applied Statistics, 13(4), 2189-2212. · Zbl 1435.62398
[138] Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of computer experiments. Statistical Science, 4(4), 409-423. · Zbl 0955.62619
[139] Salter, J. M., & Williamson, D. (2016). A comparison of statistical emulation methodologies for multi‐wave calibration of environmental models. Environmetrics, 27(8), 507-523. · Zbl 1525.62212
[140] Salter, J. M., & Williamson, D. B. (2022). Efficient calibration for high‐dimensional computer model output using basis methods. International Journal for Uncertainty Quantification, 12(6), 47-69. · Zbl 1498.68110
[141] Salter, J. M., Williamson, D. B., Scinocca, J., & Kharin, V. (2019). Uncertainty quantification for computer models with spatial output using calibration‐optimal bases. Journal of the American Statistical Association, 114, 1800-1814. · Zbl 1428.62117
[142] Sang, H., & Huang, J. Z. (2012). A full scale approximation of covariance functions for large spatial data sets. Journal of the Royal Statistical Society: Series B, 74(1), 111-132. · Zbl 1411.62274
[143] Santner, T. J., Williams, B. J., & Notz, W. I. (2018). The design and analysis of computer experiments (2nd ed.). Springer. · Zbl 1405.62110
[144] Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia‐approximated deep Gaussian processes for computer experiments. Journal of Computational and Graphical Statistics, 32(3), 824-837. · Zbl 07792021
[145] Sauer, A., Gramacy, R. B., & Higdon, D. (2023). Active learning for deep Gaussian process surrogates. Technometrics, 65(1), 4-18.
[146] Ševčíková, H., Raftery, A. E., & Waddell, P. A. (2007). Assessing uncertainty in urban simulations using Bayesian melding. Transportation Research Part B: Methodological, 41(6), 652-669.
[147] Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo‐inputs. In Advances in neural information processing systems (pp. 1257-1264). MIT Press.
[148] Stein, M. L. (1999). Interpolation of spatial data: Some theory for kriging. Springer Science & Business Media. · Zbl 0924.62100
[149] Sun, Y., & Fang, X. (2023a). A model calibration procedure for count response. Communications in Statistics‐Theory and Methods. (In press). https://doi.org/10.1080/03610926.2023.2177109 · Zbl 07880514 · doi:10.1080/03610926.2023.2177109
[150] Sun, Y., & Fang, X. (2023b). A new
[( {L}_2 \]\) calibration procedure of computer models based on the smoothing spline ANOVA. Statistical Papers. (In press). https://doi.org/10.1007/s00362-023-01478-1 · Zbl 07887505 · doi:10.1007/s00362-023-01478-1
[151] Sung, C.‐L. (2018). calibrateBinary: Calibration for computer experiments with binary responses. R package version 0.1.
[152] Sung, C.‐L. (2020). HetCalibrate: Calibration of inexact computer models with heteroscedastic errors. R package version 0.1.
[153] Sung, C.‐L. (2022). Estimating functional parameters for understanding the impact of weather and government interventions on COVID‐19 outbreak. The Annals of Applied Statistics, 16(4), 2505-2522. · Zbl 1498.62256
[154] Sung, C.‐L., Barber, B. D., & Walker, B. J. (2022). Calibration of inexact computer models with heteroscedastic errors. SIAM/ASA Journal on Uncertainty Quantification, 10(4), 1733-1752. · Zbl 1514.62046
[155] Sung, C.‐L., & Hung, Y. (2024). Efficient calibration for imperfect epidemic models with applications to the analysis of COVID‐19. Journal of the Royal Statistical Society: Series C, 73(1), 47-64. · Zbl 07884595
[156] Sung, C.‐L., Hung, Y., Rittase, W., Zhu, C., & Wu, C. F. J. (2020). Calibration for computer experiments with binary responses and application to cell adhesion study. Journal of the American Statistical Association, 115(532), 1664-1674. · Zbl 1452.62592
[157] Sürer, Ö., Plumlee, M., & Wild, S. M. (2023). Sequential Bayesian experimental design for calibration of expensive simulation models. Technometrics. (In press). https://doi.org/10.1080/00401706.2023.2246157 · doi:10.1080/00401706.2023.2246157
[158] Tavaré, S., Balding, D. J., Griffiths, R. C., & Donnelly, P. (1997). Inferring coalescence times from dna sequence data. Genetics, 145(2), 505-518.
[159] Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B. D., Todd, M. D., Mahadevan, S., Hu, C., & Hu, Z. (2022). A comprehensive review of digital twin—Part 1: Modeling and twinning enabling technologies. Structural and Multidisciplinary Optimization, 65(12), 354.
[160] Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B. D., Todd, M. D., Mahadevan, S., Hu, C., & Hu, Z. (2023). A comprehensive review of digital twin—Part 2: Roles of uncertainty quantification and optimization, a battery digital twin, and perspectives. Structural and Multidisciplinary Optimization, 66(1), 1.
[161] Tsai, W.‐P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., & Shen, C. (2021). From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling. Nature Communications, 12(1), 5988.
[162] Tuo, R. (2019). Adjustments to computer models via projected kernel calibration. SIAM/ASA Journal on Uncertainty Quantification, 7(2), 553-578. · Zbl 1430.62261
[163] Tuo, R., He, S., Pourhabib, A., Ding, Y., & Huang, J. Z. (2023). A reproducing kernel Hilbert space approach to functional calibration of computer models. Journal of the American Statistical Association, 118(542), 883-897. · Zbl 07707209
[164] Tuo, R., Wang, Y., & Wu, C. F. J. (2020). On the improved rates of convergence for Matérn‐type kernel ridge regression with application to calibration of computer models. SIAM/ASA Journal on Uncertainty Quantification, 8(4), 1522-1547. · Zbl 1459.62143
[165] Tuo, R., & Wu, C. F. J. (2015). Efficient calibration for imperfect computer models. The Annals of Statistics, 43(6), 2331-2352. · Zbl 1326.62228
[166] Tuo, R., & Wu, C. F. J. (2016). A theoretical framework for calibration in computer models: Parametrization, estimation and convergence properties. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 767-795. · Zbl 1383.62354
[167] Tuo, R., Wu, C. F. J., & Yu, D. (2014). Surrogate modeling of computer experiments with different mesh densities. Technometrics, 56(3), 372-380.
[168] Tuo, R., & Wu, C. J. (2018). Prediction based on the Kennedy-O’Hagan calibration model: Asymptotic consistency and other properties. Statistica Sinica, 28(2), 743-759. · Zbl 1390.62036
[169] Vernon, I., Goldstein, M., & Bower, R. (2014). Galaxy formation: Bayesian history matching for the observable universe. Statistical Science, 29(1), 81-90. · Zbl 1332.85007
[170] Vernon, I., Goldstein, M., & Bower, R. G. (2010). Galaxy formation: A Bayesian uncertainty analysis. Bayesian Analysis, 5(4), 619-669. · Zbl 1330.85005
[171] Viana, F. A. C., & Subramaniyan, A. K. (2021). A survey of Bayesian calibration and physics‐informed neural networks in scientific modeling. Archives of Computational Methods in Engineering, 28, 3801-3830.
[172] Wang, S., Chen, W., & Tsui, K.‐L. (2009). Bayesian validation of computer models. Technometrics, 51(4), 439-451.
[173] Wang, Y., Lu, G., & Du, J. (2022). Calibration and prediction for the inexact SIR model. Mathematical Biosciences and Engineering, 19(3), 2800-2818. · Zbl 1489.92185
[174] Wang, Y., Yue, X., Tuo, R., Hunt, J. H., & Shi, J. (2020). Effective model calibration via sensible variable identification and adjustment with application to composite fuselage simulation. The Annals of Applied Statistics, 14(4), 1759-1776. · Zbl 1498.62339
[175] Wendland, H. (2004). Scattered data approximation (Vol. 17). Cambridge University Press.
[176] Williams, B. J., Loeppky, J. L., Moore, L. M., & Macklem, M. S. (2011). Batch sequential design to achieve predictive maturity with calibrated computer models. Reliability Engineering & System Safety, 96(9), 1208-1219.
[177] Williamson, D., Blaker, A. T., Hampton, C., & Salter, J. (2015). Identifying and removing structural biases in climate models with history matching. Climate Dynamics, 45, 1299-1324.
[178] Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., & Yamazaki, K. (2013). History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble. Climate Dynamics, 41(7-8), 1703-1729.
[179] Williamson, D. B., Blaker, A. T., & Sinha, B. (2017). Tuning without over‐tuning: Parametric uncertainty quantification for the nemo ocean model. Geoscientific Model Development, 10(4), 1789-1816.
[180] Wong, R. K. W., Storlie, C. B., & Lee, T. C. M. (2017). A frequentist approach to computer model calibration. Journal of the Royal Statistical Society: Series B, 79(2), 635-648. · Zbl 1414.62079
[181] Xie, F., & Xu, Y. (2021). Bayesian projected calibration of computer models. Journal of the American Statistical Association, 116(536), 1965-1982. · Zbl 1506.62271
[182] Xiong, Y., Chen, W., Tsui, K.‐L., & Apley, D. W. (2009). A better understanding of model updating strategies in validating engineering models. Computer Methods in Applied Mechanics and Engineering, 198(15-16), 1327-1337. · Zbl 1227.74128
[183] Zhou, M., Chen, W., Su, X., Sung, C.‐L., Wang, X., & Ren, Z. (2023). Data‐driven modeling of general fluid density under subcritical and supercritical conditions. AIAA Journal, 61(4), 1519-1531.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.