×

Titchmarsh-Weyl \(m\) -functions for second-order Sturm-Liouville problems with two singular endpoints. (English) Zbl 1165.34011

The purpose of the present paper is to associate a Titchmarsh-Weyl function to a class of Sturm-Liouville problems on the half line, where the spectrum is simple and both endpoints \(x=0\) and \(x=\infty\) are singular. More precisely, the author considers the Sturm-Liouville equation
\[ -y^{\prime\prime}+qy=\lambda y\text{ on }(0,\infty) \]
under the assumptions \(q(x)\rightarrow 0\) as \(x\rightarrow\infty\) and either of the following hold.
Case I: \(q(x)=q_0x^{-2}+q_1x^{-1}+\sum_{n=0}^\infty q_{n+2}x^n\) for all \(x\in (0,\infty)\), \(q_n\) real for all \(n\), the series is convergent on \((0,\infty)\) and \(-\tfrac{1}{4}\leq q_0<\infty\), \(q_0\), \(q_1\) not both zero.
Case II: For some \(a>0\) the assumptions in Case I hold on the interval \((0,a)\) and \(q\) is real and locally summable in \([a,\infty)\).
Under these assumptions the spectrum of the usual selfadjoint differential operator associated to \(-\tfrac{d^2}{dx^2}+q\) is simple, the continuous spectrum is contained in \((0,\infty)\) and the spectrum in \((-\infty,0]\) is discrete. With the help of suitably normalized Frobenius solutions at the left endpoint a Titchmarsh-Weyl function for the doubly singular problem on \((0,\infty)\) is introduced by passing to the limit \(b\rightarrow\infty\) of a meromorphic function having its poles on the eigenvalues of an associated Sturm-Liouville problem on \((0,b]\). Thus, the definition of the Titchmarsh-Weyl function is analogous to the usual definition if \(x=0\) is a regular endpoint [see E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I. 2nd ed. Oxford: Clarendon Press (1962; Zbl 0099.05201)] and, in particular, the use of solutions defined by initial conditions at an interior point in \((0,\infty)\) is avoided. The eigenfunction expansion is constructed for both situations: \(x=0\) in the limit circle case and \(x=0\) in the limit point case.
It is worth to mention that in the limit point case the Titchmarsh-Weyl function does not belong to the class of Nevanlinna or Riesz-Herglotz functions, but to some generalized Nevanlinna class. The theory is applied to the Bessel equation and to the radial part of the separated hydrogen atom problem.

MSC:

34B20 Weyl theory and its generalizations for ordinary differential equations
34B24 Sturm-Liouville theory
34B27 Green’s functions for ordinary differential equations
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
34B40 Boundary value problems on infinite intervals for ordinary differential equations
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
35Q40 PDEs in connection with quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

Citations:

Zbl 0099.05201
Full Text: DOI

References:

[1] Archibald, The complete solution of the differential equation for the confluent hypergeometric function, Phil. Mag., J. Theor. Exper. Appl. Phys. VII pp 26– (1938) · JFM 64.0335.03
[2] F. V. Atkinson, Discrete and Continuous Boundary Problems (Academic Press, New York, 1964). · Zbl 0117.05806
[3] Atkinson, On the location of the Weyl circles, Proc. Roy. Soc. Edinburgh Sect. A 88 pp 345– (1981) · Zbl 0485.34012 · doi:10.1017/S0308210500020163
[4] Atkinson, Asymptotics of the Titchmarsh-Weyl m -coefficient for non-integrable potentials, Proc. Roy. Soc. Edinburgh Sect. A 129 pp 663– (1999) · Zbl 0936.34073 · doi:10.1017/S0308210500013068
[5] Bailey, Algorithm 810 - The SLEIGN2 Sturm-Liouville code, ACM Trans. Math. Software (2) 27 pp 143– (2001) · Zbl 1070.65576
[6] H. A. Bethe, and E. E. Salpeter, Quantum Mechanics of One- and Two-electron Atoms (Academic Press, New York, 1957). · Zbl 0089.21006
[7] H. Buchholz, The Confluent Hypergeometric Function (Springer, New York, 1969). · Zbl 0169.08501
[8] E. Coddington, and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955). · Zbl 0064.33002
[9] Dijksma, Singular point-like perturbations of the Bessel operator in a Pontryagin space, J. Differential Equations 164 pp 49– (2000) · Zbl 0960.47021
[10] N. Dunford, and J. Schwartz, Linear Operators, Part II (Interscience Pub., New York, N. Y., 1963).
[11] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. I (McGraw-Hill, New York, 1953). · Zbl 0051.30303
[12] W. N. Everitt, A catalogue of Sturm-Liouville differential equations, in: Sturm-Liouville Theory, Past and Present, Proceedings of the Geneva Conference on the Occasion of the 200th Birthday of Charles Sturm, September 15-19, 2003, edited by W. O. Amrein, A. M. Hinz, and D. B. Pearson (Birkhäuser, Basel, 2005), pp. 271-331. · Zbl 1088.34017
[13] Fues, Das Eigenschwingungsspektrum zweiatomiger Moleküle in der Undulationsmechanik, Ann. Physik 80 pp 367– (1926)
[14] Fues, Zur Intensität der Bandenlinien und des Affinitätsspektrums zweiatomiger Moleküle, Ann. Physik 81 pp 281– (1926)
[15] Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 87 pp 1– (1980) · Zbl 0458.34013 · doi:10.1017/S0308210500012312
[16] Fulton, Parametrizations of Titchmarsh’sm ({\(\lambda\)})-functions in the limit circle case, Trans. Amer. Math. Soc. 229 pp 51– (1977)
[17] C. Fulton, Parametrizations of Titchmarsh’s m ({\(\lambda\)})-functions in the Limit Circle Case, D. Sc. Diss., Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany (1973).
[18] Fulton, The computation of spectral density functions for singular Sturm-Liouville problems involving simple continuous spectra, ACM Trans. Math. Software 34 pp 107– (1998) · Zbl 0920.65051
[19] C. Fulton, and H. Langer, Sturm-Liouville operators with singularities and Generalized Nevanlinna functions, in preparation. · Zbl 1214.34022
[20] Gordon, Zur berechnung der Matrizen beim Wasserstoffatom, Ann. Physik 2 pp 1031– (1929) · JFM 55.0537.02
[21] G. Hellwig, Differential Operators of Mathematical Physics (Addison-Wesley, Reading, Mass., 1967). · Zbl 0163.11801
[22] E. Hille, Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, Mass., 1969). · Zbl 0179.40301
[23] K. Jörgens, and F. Rellich, Eigenwerttheorie gewöhnlicher Differentialgleichungen (Springer, Berlin, 1976).
[24] K. Jörgens, Spectral Theory of a Second Order Ordinary Differential Equation, Aarhus University Lecture Notes (Aarhus University, Aarhus, Denmark, 1962-63).
[25] C. Knoll, and C. Fulton, Using a computer algebra system (Mathematica) to simplify expressions for Titchmarsh-Weyl m -functions associated with the Hydrogen Atom on the half-line, Technical Report, Florida Institute of Technology (2007).
[26] Krein, Some propositions on analytic matrix functions related to the theory of operators on the space {\(\Pi\)}k, Acta Sci. Math. (Szeged) 43 pp 181– (1981) · Zbl 0492.30035
[27] Krein, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Räume {\(\Pi\)}{\(\kappa\)} zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77 pp 187– (1977) · Zbl 0412.30020
[28] N. N. Lebedev, Special Functions and their Applications, revised English edition (Prentice-Hall, Englewood Cliffs, N. J., 1965). · Zbl 0131.07002
[29] Levinson, A simplified proof of the expansion theorem for singular second order differential equations, Duke Math. J. 18 pp 57– (1951) · Zbl 0044.31302
[30] B. M. Levitan, Expansion in Characteristic Functions of Differential Equations of the Second Order (in Russian) (Gosthekhizdat, Moscow, 1950).
[31] B. M. Levitan, and I. S. Sargsjan, Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, American Mathematical Society Translations Vol. 39 (Amer. Math. Soc., Providence, R. I., 1975). · Zbl 0302.47036
[32] Y. L. Luke, The Special Functions and their Approximation Vol. I (Academic Press, New York, N. Y., 1969). · Zbl 0193.01701
[33] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, Berlin -New York, 1966). · Zbl 0143.08502
[34] J. Mehra, and H. Rechenberg, The Historical Development of Quantum Theory, Vol. 5, Part 2 (Springer-Verlag, New York, 1987). · Zbl 1041.81004
[35] Oppenheimer, On the Quantum Theory of the Problem of the Two Bodies, Proc. Camb. Phil. Soc. 23 pp 422– (1926) · JFM 52.0978.04
[36] Oppenheimer, Zur Quantentheorie kontinuierlicher Spektren, Z. Phys. A 41 pp 268– (1927) · JFM 53.0866.03 · doi:10.1007/BF01391242
[37] Pruess, Mathematical software for Sturm-Liouville problems, ACM Trans. Math. Software 19 pp 360– (1993) · Zbl 0890.65087
[38] Pryce, A test package for Sturm-Liouville solvers, ACM Trans. Math. Software 25 pp 51– (1999)
[39] J. Pryce, Numerical Solution of Sturm-Liouville Problems (Clarendon Press, Oxford, 1993). · Zbl 0795.65053
[40] Rellich, Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik, Math. Z. 49 pp 702– (194344)
[41] Rellich, Halbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math. Ann. 122 pp 343– (1951) · Zbl 0044.31201
[42] F. Rellich, Spectral Theory of a Second-order Ordinary Differential Operator, New York University Lecture Notes (New York University, New York, 1951).
[43] F. Rellich, Lecture Notes on the Spectral Theory of One-dimensional Ordinary Differential Equations, Part I (Universität Göttingen, Göttingen, Germany, 1952).
[44] F. Rellich, Lecture Notes on the Spectral Theory of One-dimensional Ordinary Differential Equations, Part II (Universit ät Göttingen, Göttingen, Germany, 1953).
[45] L. J. Slater, Confluent Hypergeometric Functions (Cambridge University Press, Cambridge, 1960). · Zbl 0086.27502
[46] L. Schlesinger, Einführung in die Theorie der Differentialgleichungen auf funktionentheoretischer Grundlage, Dritte Auflage (Vereinigung Wissenschaftlicher Verleger Walter de Gruyter & Co., Berlin -Leipzig, 1922). · JFM 48.0497.09
[47] E. Schrödinger, Collected Papers on Wave Mechanics (Blackie and Son Limited, London -Glasgow, 1928).
[48] Schrödinger, Quantisierung als Eigenwertproblem, Vierte Mitteilung, Ann. Physik (4) 81 pp 115– (1926)
[49] A. Sommerfeld, Wave Mechanics (E. P. Dutton and Company Inc., New York, 1929).
[50] Sommerfeld, Ü ber den Photoeffekt in der K -Schale der Atome, insbesondere über die Voreilung der Photoelektronen, Ann. Physik (4) 4 pp 409– (1930) · JFM 56.1321.05
[51] E. C. Titchmarsh, Eigenfunction Expansions associated with Second-order Differential Equations, Part I, 1st edition (Clarendon Press, Oxford, 1946). · Zbl 0061.13505
[52] E. C. Titchmarsh, Eigenfunction Expansions associated with Second-order Differential Equations, Part I, 2nd edition (Clarendon Press, Oxford, 1962). · Zbl 0099.05201
[53] E. C. Titchmarsh, Eigenfunction Expansions associated with Second-order Differential Equations, Part II (Clarendon Press, Oxford, 1958). · Zbl 0097.27601
[54] Titchmarsh, On expansions in eigenfunctions (II), Quart. J. Math. Oxford 11 pp 129– (1940)
[55] Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 pp 220– (1910) · JFM 41.0343.01
[56] Weyl, Über gewöhnliche Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen, Nachrichten der Göttinger Ges. Wiss. pp 442– (1910)
[57] E. Whittaker, and G. Watson, A Course of Modern Analysis, 4th edition (Cambridge University Press, London, 1963). · Zbl 0108.26903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.