×

Spectral numerical schemes for time-dependent convection with viscosity dependent on temperature. (English) Zbl 1470.76071

Summary: This article proposes spectral numerical methods to solve the time evolution of convection problems with viscosity strongly dependent on temperature at infinite Prandtl number. Although we verify the proposed techniques solely for viscosities that depend exponentially on temperature, the methods are extensible to other dependence laws. The set-up is a 2D domain with periodic boundary conditions along the horizontal coordinate which introduces a symmetry in the problem. This is the O(2) symmetry, which is particularly well described by spectral methods and motivates the use of these methods in this context. We examine the scope of our techniques by exploring transitions from stationary regimes towards time dependent regimes. At a given aspect ratio, stable stationary solutions become unstable through a Hopf bifurcation, after which the time-dependent regime is solved by the spectral techniques proposed in this article.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76R99 Diffusion and convection

Software:

RODAS; NACHOS

References:

[1] Kellogg, L. H.; King, S. D., The effect of temperature dependent viscosity on the structure of new plumes in the mantle: results of a finite element model in a spherical, axisymmetric shell, Earth Planet Sci Lett, 148, 13-26 (1997)
[2] Zaranek, S. E.; Parmentier, E., The onset of convection in fluids with strongly temperature-dependent viscosity cooled from above with implications for planetary lithospheres, Earth Planet Sci Lett, 224, 371-386 (2004)
[3] Bottaro, A.; Metzener, P.; Matalon, M., Onset and two-dimensional patterns of convection with strongly temperature-dependent viscosity, Phys Fluids, 4, 655-663 (1992) · Zbl 0825.76779
[4] Davies, G., Dynamic earth plates plumes and mantle convection (2001), Cambridge University Press
[5] Torrance, K. E.; Turcotte, D. L., Thermal convection with large viscosity variations, J Fluid Mech., 47, 113 (1971)
[6] Stengel, K. C.; Olivier, D. S.; Booker, J. R., Onset of convection in a variable-viscosity fluid, J Fluid Mech, 129, 411-431 (1982) · Zbl 0534.76093
[7] Morris, S., The effects of strongly temperature-dependent viscosity on slow flow past a hot sphere, J Fluid Mech, 124, 1-26 (1982) · Zbl 0514.76023
[8] Moresi, L. N.; Solomatov, V. S., Numerical investigation of 2D convection with extremely large viscosity variations, Phys Fluids, 7, 9, 2154-2162 (1995) · Zbl 1126.76364
[9] Fulford, G. R.; Broadbridge, P., Industrial mathematics. Industrial mathematics, Australian mathematical society lecture series, 16 (2002), Cambridge University Press · Zbl 0982.00007
[10] Ulvrová, M.; Labrosse, S.; Coltice, N.; Raback, P.; Tackley, P., Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean, Phys Earth Planet Inter, 206-207, 51-66 (2012)
[12] Palm, E.; Ellingsen, T.; Gjevik, B., On the occurrence of cellular motion in Bénard convection, J Fluid Mech., 30, 651-661 (1967) · Zbl 0204.28501
[13] Richardson, L.; Straughan, B., A nonlinear stability analysis for convection with temperature-dependent viscosity, Acta Mech, 97, 41-49 (1993) · Zbl 0761.76024
[14] Diaz, J. I.; Straughan, B., Global stability for convection when the viscosity has a maximum, Continuum Mech Thermodyn, 16, 347-352 (2004) · Zbl 1066.76028
[15] Vaidya, A.; Wulandana, R., Non-linear stability for convection with quadratic temperature dependent viscosity, Math Methods Appl Sci, 29, 1555-1561 (2006) · Zbl 1099.76020
[16] Gunzburger, M.; Saka, Y.; Wang, X., Well-posedness of the infinite Prandtl number model for convection with temperature-dependent viscosity, Anal Appl, 7, 297-308 (2009) · Zbl 1169.35369
[17] Wang, C.; Zhang, Z., Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv Math, 228, 43-62 (2011) · Zbl 1231.35180
[18] Pla, F.; Mancho, A. M.; Herrero, H., Bifurcation phenomena in a convection problem with temperature dependent viscosity at low aspect ratio, Physica D Nonlinear Phenom, 238, 5, 572-580 (2009) · Zbl 1157.37341
[19] Guckenheimer, J.; Holmes, P., Structurally stable heteroclinic cycles, Math Proc Cambridge Philos Soc, 103, 189-192 (1988) · Zbl 0645.58022
[20] Armbruster, D.; Guckenheimer, J.; Holmes, P., Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, 29, 257-282 (1988) · Zbl 0634.34027
[21] Dawson, S. P.; Mancho, A. M., Collections of heteroclinic cycles in the Kuramoto-Sivashinsky equation, Physica D, 100, 3-4, 231-256 (1997) · Zbl 0890.35123
[22] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence coherent structures dynamical systems and symmetry. Turbulence coherent structures dynamical systems and symmetry, Cambridge monographs and mechanics (1996), Cambridge University Press · Zbl 0890.76001
[23] Johnson, D.; Narayanan, R., Experimental observation of dynamic mode switching in interfacial-tension-driven convection near a codimension-two point, Phys Rev E, 54, R3102 (1996)
[24] Dauby, P.; Colinet, P.; Johnson, D., Theoretical analysis of a dynamic thermoconvective pattern in a circular container, Phys Rev E, 61, 2663 (2000)
[25] Assemat, P.; Bergeon, A.; Knobloch, E., Nonlinear marangoni convection in circular and elliptical cylinders, Phys Fluids, 19, 104101 (2007) · Zbl 1182.76034
[26] Ismail-Zadeh, A.; Tackley, P., Computational methods for geodynamics (2010), Cambridge University Press · Zbl 1218.76001
[27] Gartling, D., NACHOS - a finite element computer program for incompressible flow problems. Parts I and II, Sand 77-1333, Sand 77-1334 (1977), Sandia National Laboratories, Albuquerque, NM: Sandia National Laboratories, Albuquerque, NM USA
[28] Blankebach, B.; Busse, F.; Christensen, U.; Cserepes, L.; Gunkel, D.; Hansen, U.; Harder, H.; Jarvis, G.; Koch, M.; Marquart, G.; Moore, D.; Olson, P.; Schmeling, H.; Schnaubelt, T., A benchmark comparison for mantle convection codes, Geophys J Int, 98, 23-38 (1989)
[29] Cserepes, L., On different numerical solutions of the equations of mantle convection, (Stegena, Annales universitatis scientarum budapestinensis section of geophysics and metorology (1985), Eötvös Univesity: Eötvös Univesity Budapest), 52-67
[30] Moore, D. R.; Peckover, R. R.; Weiss, N. O., Difference methods for two-dimensional convection, Comput Phys Commun, 6, 198-220 (1974)
[31] Christensen, U.; Harder, H., 3-d convection with variable viscosity, Geophys J Int, 104, 213-226 (1991)
[32] Cadek, O.; Fleitout, L., Effect of lateral viscosity variations in the top 300km on the geoid and dynamic topography, Geophys J Int, 152, 566-580 (2003)
[33] Mercader, I.; Batiste, O.; Alonso, A., An efficient spectral code for incompressible flows in cylindrical geometries, Comput Fluids, 39, 2, 215-224 (2010) · Zbl 1242.76221
[34] Hugues, S.; Randriamampianina, A., An improved projection scheme applied to pseudospectral methods for the incompressible Navier-Stokes equations, Int J Numer Methods Fluids, 28, 3, 501-521 (1998) · Zbl 0932.76065
[35] García, F.; Net, M.; García-Archilla, B.; Sánchez, J., A comparison of high-order time integrators for thermal convection in rotating spherical shells, J Comput Phys, 229, 7997-8010 (2010) · Zbl 1207.80009
[36] Hairer, E.; Norsett, S.; Wanner, G., Solving ordinary differential equations I nonstiff problems (2009), Springer
[37] Hairer, E.; Wanner, G., Solving ordinary differential equations II stiff and differential Algebraic Problems (1991), Springer · Zbl 0729.65051
[38] Pla, F.; Herrero, H.; Lafitte, O., Theoretical and numerical study of a thermal convection problem with temperature-dependent viscosity in an infinite layer, Physica D Nonlinear Phenom, 239, 13, 1108-1119 (2010) · Zbl 1189.37094
[39] Herrero, H.; Mancho, A. M., On pressure boundary conditions for thermoconvective problems, I J Numer Methods Fluids, 39, 5, 391-402 (2002) · Zbl 1040.76018
[40] Herrero, H.; Mancho, A., Numerical modeling in chebyshev collocation methods applied to stability analysis of convection problems, Appl Numer Math, 33, 161-166 (2000) · Zbl 0964.65111
[41] Herrero, H.; Hoyas, S.; Donoso, A.; Mancho, A. M.; Chacón, J. M.; Portugués, R. F.; Yeste, B., Chebyshev collocation for a convective problem in primitive variable formulation, J Sci Comput, 18, 3, 315-328 (2003) · Zbl 1032.76653
[42] Hoyas, S.; Herrero, H.; Mancho, A., Thermal convection in a cylindrical annulus heated laterally, J Phys A Math Gen, 35, 4067 (2002) · Zbl 1042.76025
[43] Navarro, M. C.; Mancho, A. M.; Herrero, H., Instabilities in buoyant flows under localized heating, Chaos Interdisciplinary J Nonlinear Sci, 17, 023105 (2007) · Zbl 1159.37374
[44] Navarro, M. C.; Herrero, H.; Mancho, A. M.; Wathen, A., Efficient solution of generalized eigenvalue problem arising in a thermoconvective instability, Commun Comput Phys, 3, 308-329 (2008) · Zbl 1195.76322
[46] Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W., Numerical recipes in fortran 77: the art of scientific computing (1992), Cambridge University Press · Zbl 0778.65002
[47] White, D. B., The planforms and onset of convection with a temperature dependent viscosity, J Fluid Mech, 191, 247-286 (1988)
[48] Solomatov, V., Localized subcritical convective cells in temperature-dependent viscosity fluids, Phys Earth Planet Inter, 200-201, 63-71 (2012)
[49] Tuckerman, L. S., Divergence-free velocity fields in nonperiodic geometries, J Comput Phys, 80, 2, 403-441 (1989) · Zbl 0668.76027
[50] Mancho, A. M.; Herrero, H.; Burguete, J., Primary instabilities in convective cells due to nonuniform heating, Phys Rev E, 56, 3, 2916 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.