×

Terminating evolutionary algorithms at their steady state. (English) Zbl 1317.90263

Summary: Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.

MSC:

90C29 Multi-objective and goal programming

Software:

DEoptim; CMA-ES; EvA2
Full Text: DOI

References:

[1] Agapie, A.: Theoretical analysis of mutation-adaptive evolutionary algorithms. Evol. Comput. 9, 127-146 (2001) · doi:10.1162/106365601750190370
[2] Arnold, S.: The Theory of Linear Models and Multivariate Observations. Wiley, New York (1997)
[3] Ashish, S., Srivastava, M.: Regression Analysis. Theory, Methods and Applications. Springer, New York (1990) · Zbl 0714.62057
[4] Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J., Blom, J.: Systems biology: parameter estimation for biochemical models. In: FEBS, pp. 886-902 (2009)
[5] Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: CEC, pp. 1769-1776 (2005)
[6] Aytug, H.K.G.: New stopping criterion for genetic algorithms. Eur. J. Oper. Res. 126, 662-674 (2000) · Zbl 0982.90067 · doi:10.1016/S0377-2217(99)00321-5
[7] Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1, 3-17 (1997) · doi:10.1109/4235.585888
[8] Bertsimas, D.J.T.: Simulated annealing. Stat. Sci. 8(1), 10-15 (1993) · doi:10.1214/ss/1177011077
[9] Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: GECCO, 14th Annual Conference on Genetic and Evolutionary Computation, pp. 313-320. ACM, New York, USA (2012)
[10] Cagnoni, S., Lutton, E., Olague, G.: Genetic and Evolutionary Computation for Image Processing and Analysis. Hindawi Publishing Corporation, New York (2008) · Zbl 1214.68442
[11] Cheney, W., Kincaid, D.: Numerical Mathematics and Computing, 6th edn. Bob Pirtle, USA (2008) · Zbl 0487.65001
[12] Das, S., Konar, A.: An improved differential evolution scheme for noisy optimization problems. In: Pat Rec Mac Int, no. 3776 in LNCS, pp. 417-421 (2005) · Zbl 1202.74136
[13] Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective optimization. In: SEAL, pp. 13-20 (2002) · Zbl 1202.74136
[14] Finck, S., Hansen, N., Ros, R., Auger, A.: Real Paraemter Black-Box Optimization Benchmarking 2009: Presentation of the Noiseless Functions. Technical Report 2009/20, Research Center PPE (2009)
[15] Goel, T., Stander, N.: A non-dominance-based online stopping criterion for multiobjective evolutionary algorithms. Int. J. Numer. Methods Eng. 84, 661-684 (2010) · Zbl 1202.74136 · doi:10.1002/nme.2909
[16] Guerrero, J., Marti, L., Garcia, J., Berlanga, A., Molina, J.: Introducing a robust and efficient stopping criterion for moeas. In: CEC, pp. 1-8 (2010) · Zbl 0982.90067
[17] Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: ACM-GECCO (2009)
[18] Hansen, N., Auger, A., Ros, R., Finck, S., Posík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking. In: GECCO, pp. 1689-1696 (2010)
[19] Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Technical Report RR-6829, INRIA (2009)
[20] Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1-18 (2003)
[21] Kronfeld, M., Planatscher, H., Zell, A.: The EvA2 optimization framework. In: LION-SWOP, no. 6073 in LNCS, pp. 247-250. Springer, New York (2010)
[22] Kwok, N.M., Ha, Q.P., Liu, D.K., Fang, G., Tan, K.C.: Efficient particle swarm optimization: a termination condition based on the decision-making approach. In: CEC, pp. 3353-3360 (2007)
[23] Marti, L., Garcia, J., Berlanga, A., Molina, J.: An approach to stopping criteria for multi-objective optimization evolutionary algorithms: the mgbm criterion. In: CEC, pp. 1263-1270 (2009)
[24] Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: GECCO’11, pp. 829-836 (2011)
[25] Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking evolutionary algorithms: towards exploratory landscape analysis. In: PPSN XI, Part I, LNCS 6238, pp. 73-82 (2010)
[26] Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: DEoptim: an R package for global optimization by differential evolution. J. Stat. Softw. 40(6), 1-26 (2011)
[27] Pandi, V.R., Panigrahi, B.K.: Comparative study of evolutionary computing methods for parameter estimation of power quality signals. IJAEC 1(2), 28-59 (2010)
[28] Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2005) · Zbl 1186.90004
[29] Rizki, M., Zmuda, M., Tamburino, L.: Evolving pattern recognition systems. IEEE Trans. Evol. Comput. 6(6), 594-609 (2002) · doi:10.1109/TEVC.2002.806167
[30] Roche, D., Gil, D., Giraldo, J.: An inference model for analyzing termination conditions of evolutionary algorithms. In: CCiA Proceedings, pp. 216-225 (2011)
[31] Roche, D., Gil, D., Giraldo, J.: Using statistical inference for designing termination conditions ensuring convergence of evolutionary algorithms. In: Proceedings of ECAL, pp. 680-687 (2011)
[32] Roche, D., Gil, D., Giraldo, J.: Detecting loss of diversity for an efficient termination of EAs. In: SYNASC, IEEE Proceedings, pp. 563-568 (2013)
[33] Rudenko, O., Schoenauer, M.: A steady performance stopping criterion for paretobased. In: Multi-Objective Programming and Goal Programming Conference (2004)
[34] Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill Science, New York (1976) · Zbl 0346.26002
[35] Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5, 96-101 (1994) · doi:10.1109/72.265964
[36] Rudolph, G.: Finite markov chain results in evolutionary computation: a tour d’horizon. Fundam. Inform. (1998) · Zbl 0943.68060
[37] Safe, M., Carballido, J., Ponzoni, I.: On stopping criteria for genetic algorithms. In: SBIA 2004, no. 3171 in LNCS, pp. 405-413 (2004) · Zbl 1105.68428
[38] Shir, O.M.: Niching in Evolutionary Algorithms. Springer, New York (2013)
[39] Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[40] Tagetiren, M., Suganthan, P.: A multi-populated differential evolution algorithm for solving contrained optimization problem. In: CEC, pp. 340-347 (2006)
[41] Thomsen, R.: Multimodal optimization using crowding-based differential evolution. No. vol 2 in CEC2004, pp. 1382-1389 (2004)
[42] Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: CEC, pp. 1980-1987 (2004)
[43] Wagner, T., Trautmann, H., Martí, L.: A taxonomy of online stopping criteria for multi-objective evolutionary algorithms. In: EMO’11, pp. 16-30 (2011)
[44] Wagner, T., Trautmann, H., Naujoks, B.: Ocd: online convergence detection for evolutionary multi-objective algorithms based on statistical testing. In: EMO, pp. 198-215 (2009)
[45] Xia, W., Wu, Z.: An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind. Eng. 48(2), 409-425 (2005) · doi:10.1016/j.cie.2005.01.018
[46] Zaharie, D.: Critical values for the control parameters of differential evolution algorithm. In: MENDEL, pp. 62-67 (2002)
[47] Zaharie, D.: A compartive analysis of crossover variants in differential evolution. In: Proceedings of the International Conference on Computer Science and Information Technology, pp. 171-181 (2007)
[48] Zielinski, K., Laur, R.: Stopping criteria for differential evolution in constrained single-objective optimization. In: Studies in Computational Intelligence, No. 143 in Advances in Differential Evolution, pp. 111-138 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.