×

A GPU-based Gibbs sampler for a unidimensional IRT model. (English) Zbl 1486.62310

Summary: Item response theory (IRT) is a popular approach used for addressing large-scale statistical problems in psychometrics as well as in other fields. The fully Bayesian approach for estimating IRT models is usually memory and computationally expensive due to the large number of iterations. This limits the use of the procedure in many applications. In an effort to overcome such restraint, previous studies focused on utilizing the message passing interface (MPI) in a distributed memory-based Linux cluster to achieve certain speedups. However, given the high data dependencies in a single Markov chain for IRT models, the communication overhead rapidly grows as the number of cluster nodes increases. This makes it difficult to further improve the performance under such a parallel framework. This study aims to tackle the problem using massive core-based graphic processing units (GPU), which is practical, cost-effective, and convenient in actual applications. The performance comparisons among serial CPU, MPI, and compute unified device architecture (CUDA) programs demonstrate that the CUDA GPU approach has many advantages over the CPU-based approach and therefore is preferred.

MSC:

62P15 Applications of statistics to psychology
62F15 Bayesian inference
62-08 Computational methods for problems pertaining to statistics

Software:

CUDA; R; BUGS; IRTuno; JAGS; cuRAND
Full Text: DOI

References:

[1] Bock, R. D.; Aitkin, M., Marginal maximum likelihood estimation of item parameters: application of an EM algorithm, Psychometrika, 46, 4, 443-459 (1981) · doi:10.1007/BF02293801
[2] Mislevy, R. J., Estimation of latent group effects, Journal of the American Statistical Association, 80, 392, 993-997 (1985) · doi:10.1080/01621459.1985.10478215
[3] Patz, R. J.; Junker, B. W., A straightforward approach to Markov chain Monte Carlo methods for item response model, Journal of Educational and Behavioral Statistics, 24, 2, 146-178 (1999) · doi:10.2307/1165199
[4] Tsutakawa, R. K.; Lin, H. Y., Bayesian estimation of item response curves, Psychometrika, 51, 2, 251-267 (1986) · Zbl 0601.62047 · doi:10.1007/BF02293983
[5] Bafumi, J.; Gelman, A.; Park, D. K.; Kaplan, N., Practical issues in implementing and understanding Bayesian ideal point estimation, Political Analysis, 13, 2, 171-187 (2005) · doi:10.1093/pan/mpi010
[6] Martin, C. S.; Chung, T.; Kirisci, L.; Langenbucher, J. W., Item response theory analysis of diagnostic criteria for alcohol and cannabis use disorders in adolescents: implications for DSM-V, Journal of Abnormal Psychology, 115, 4, 807-814 (2006) · doi:10.1037/0021-843X.115.4.807
[7] Feske, U.; Kirisci, L.; Tarter, R. E.; Pilkonis, P. A., An application of item response theory to the DSM-III-R criteria for borderline personality disorder, Journal of Personality Disorders, 21, 4, 418-433 (2007) · doi:10.1521/pedi.2007.21.4.418
[8] Beseler, C. L.; Taylor, L. A.; Leeman, R. F., An item-response theory analysis of DSM-IV Alcohol-Use disorder criteria and “binge” drinking in undergraduates, Journal of Studies on Alcohol and Drugs, 71, 3, 418-423 (2010)
[9] Gilder, D. A.; Gizer, I. R.; Ehlers, C. L., Item response theory analysis of binge drinking and its relationship to lifetime alcohol use disorder symptom severity in an American Indian community sample, Alcoholism: Clinical and Experimental Research, 35, 5, 984-995 (2011) · Zbl 0188.58903 · doi:10.1007/BF00247688
[10] Panter, A. T.; Reeve, B. B., Assessing tobacco beliefs among youth using item response theory models, Drug and Alcohol Dependence, 68, 1, 21-39 (2002) · doi:10.1016/S0376-8716(02)00213-2
[11] Courvoisier, D.; Etter, J. F., Using item response theory to study the convergent and discriminant validity of three questionnaires measuring cigarette dependence, Psychology of Addictive Behaviors, 22, 3, 391-401 (2008) · doi:10.1037/0893-164X.22.3.391
[12] Rose, J. S.; Dierker, L. C., An item response theory analysis of nicotine dependence symptoms in recent onset adolescent smokers, Drug and Alcohol Dependence, 110, 1-2, 70-79 (2010) · doi:10.1016/j.drugalcdep.2010.02.006
[13] Fienberg, S. E.; Johnson, M. S.; Junker, B. W., Classical multilevel and Bayesian approaches to population size estimation using multiple lists, Journal of the Royal Statistical Society A: Statistics in Society, 162, 3, 383-405 (1999) · doi:10.1111/1467-985X.00143
[14] Reiser, M., An application of the item-response model to psychiatric epidemiology, Sociological Methods and Research, 18, 1, 66-103 (1989)
[15] Orlando, M.; Sherbourne, C. D.; Thissen, D., Summed-score linking using item response theory: application to depression measurement, Psychological Assessment, 12, 3, 354-359 (2000) · doi:10.1037//1040-3590.12.3.354
[16] Tsutsumi, A.; Iwata, N.; Watanabe, N.; De Jonge, J.; Pikhart, H.; Fernández-López, J. A.; Xu, L.; Peter, R.; Knutsson, A.; Niedhammer, I.; Kawakami, N.; Siegrist, J., Application of item response theory to achieve cross-cultural comparability of occupational stress measurement, International Journal of Methods in Psychiatric Research, 18, 1, 58-67 (2009) · doi:10.1002/mpr.277
[17] Reckase, M. D., The past and future of multidimensional item response theory, Applied Psychological Measurement, 21, 1, 25-36 (1997) · doi:10.1177/0146621697211002
[18] Embretson, S. E.; Reise, S. P., Item Response Theory for Psychologists (2000), Mahwah, NJ, USA: Erlbaum, Mahwah, NJ, USA
[19] Hays, R. D.; Morales, L. S.; Reise, S. P., Item response theory and health outcomes measurement in the 21st century, Medical Care, 38, 9, II28-II42 (2000)
[20] Hambleton, R. K.; Swaminathan, H., Item Response Theory: Principles and Applications (1985), Norwell, Mass, USA: Kluwer Academic Publishers, Norwell, Mass, USA
[21] Reise, S. P., The emergence of item response theory models and the patient reported outcomes measurement information systems, Austrian Journal of Statistics, 38, 4, 211-220 (2009)
[22] Birnbaum, A., Statistical theory for logistic mental test models with a prior distribution of ability, Journal of Mathematical Psychology, 6, 2, 258-276 (1969) · Zbl 0175.18003 · doi:10.1016/0022-2496(69)90005-4
[23] Baker, F. B.; Kim, S. H., Item Response Theory: Parameter Estimation Techniques. Item Response Theory: Parameter Estimation Techniques, 1 em Plus 0.5 em Minus 0.4 em (2004), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 1054.62141
[24] Molenaar, I. W.; Fischer, G. H.; Molenaar, I. W., Estimation of item parameters, Rasch Models: Foundations, Recent Developments, and Applications, 39-51 (1995), New York, NY, USA: Springer, New York, NY, USA · Zbl 0831.62093
[25] Smith, A. F. M.; Roberts, G. O., Bayesian computation via the Gibbs sampler and related Markov chain MONte Carlo methods, Journal of the Royal Statistical Society B: Methodological, 55, 1, 3-23 (1993) · Zbl 0779.62030
[26] Tierney, L., Markov chains for exploring posterior distributions, The Annals of Statistics, 22, 4, 1701-1762 (1994) · Zbl 0829.62080 · doi:10.1214/aos/1176325750
[27] Albert, J. H., Bayesian estimation of normal ogive item response curves using Gibbs sampling, Journal of Educational Statistics, 17, 3, 251-269 (1992)
[28] Geman, S.; Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 6, 721-741 (1984) · Zbl 0573.62030
[29] Lord, F. M.; Novick, M. R., Statistical Theories of Mental Test Scores (1968), Boston, Mass, USA: Addison-Wesley, Boston, Mass, USA · Zbl 0186.53701
[30] Sheng, Y.; Headrick, T. C., An algorithm for implementing Gibbs sampling for 2PNO IRT models, Journal of Modern Applied Statistical Methods, 6, 1, 341-349 (2007)
[31] Harwell, M.; Stone, C. A.; Hsu, T.-C.; Kirisci, L., Monte Carlo studies in item response theory, Applied Psychological Measurement, 20, 2, 101-125 (1996) · doi:10.1177/014662169602000201
[32] Pastias, K.; Rahimi, M.; Sheng, Y.; Rahimi, S., Parallel computing with a Bayesian item response model, American Journal of Computational Mathematics, 2, 2, 65-71 (2012)
[33] Sheng, Y.; Rahimi, M., High performance Gibbs sampling for IRT models using row-wise decomposition, ISRN Computational Mathematics, 2012 (2012) · Zbl 1268.91157 · doi:10.5402/2012/264040
[34] Foster, I., Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering (1995), Addison-Wesley · Zbl 0844.68040
[35] Kirk, D. B.; Hwu, W. W., Programming Massively Parallel Processors: A Hands-on Approach (2013), Burlington, Mass, USA: Elsevier, Burlington, Mass, USA
[36] Spiegelhalter, D. J.; Thomas, A.; Best, N. G.; Gilks, W. R., BUGS: Bayesian Inference Using Gibbs Sampling (1996)
[37] Plummer, M.; Hornik, K.; Leisch, F.; Zeileis, A., JAGS: a program for analysis of Bayesian graphical models using Gibbs Sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Technische Universit at Wien
[38] R Core Team, R: A Language and Environment for Statistical Computing (2013), Vienna, Austria: R Foundation for Statistical Computing, Vienna, Austria
[39] Ferreira da Silva, A. R., cudaBayesreg: parallel implementation of a Bayesian multilevel model for fMRI data analysis, Journal of Statistical Software, 44, 4, 1-24 (2011)
[40] NVIDIA, Cuda Curand Library
[41] Hoberock, J.; Bell, N.
[42] Hyde, R., Write Great Code. Write Great Code, Thinking Low-Level, Writing High-Level, 2 (2006), San Francisco, Calif, USA: No Starch Press, San Francisco, Calif, USA
[43] Osterlind, S., A National Review of Scholastic Achievement in General Education: How are We Doing and Why Should We Care?. A National Review of Scholastic Achievement in General Education: How are We Doing and Why Should We Care?, ASHE-ERIC Higher Education Report, 25 (1997), Washington, DC, USA: George Washington University Graduate School of Education and Human Development, Washington, DC, USA
[44] Sheng, Y., Markov chain Monte Carlo estimation of normal ogive IRT models in MATLAB, Journal of Statistical Software, 25, 8, 1-15 (2008)
[45] DiMarco, J.; Taufer, M., Performance impact of dynamic parallelism on different clustering algorithms, Modeling and Simulation for Defense Systems and Applications VIII · doi:10.1117/12.2018069
[46] Harris, M., Optimizing parallel reduction in CUDA, ” presentation packaged with CUDA Toolkit (2007), ” presentation packaged with CUDA Toolkit: NVIDIA Corporation, ” presentation packaged with CUDA Toolkit
[47] Hart, A.; Ansaloni, R.; Gray, A., Porting and scaling OpenACC applications on massively-parallel, GPU-accelerated supercomputers, The European Physical Journal: Special Topics, 210, 1, 5-16 (2012) · doi:10.1140/epjst/e2012-01634-y
[48] Georganas, E., High Performance Parallel Gibbs Sampling for IRT Models (2013), ParLab Winter Retreat
[49] Karunadasa, N. P.; Ranasinghe, D. N., Accelerating high performance applications with CUDA and MPI, Proceedings of the International Conference on Industrial and Information Systems (ICIIS ’09) · doi:10.1109/ICIINFS.2009.5429842
[50] Yang, C.-T.; Huang, C.-L.; Lin, C.-F., Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters, Computer Physics Communications, 182, 1, 266-269 (2011) · doi:10.1016/j.cpc.2010.06.035
[51] Oancea, B.; Andrei, T., Developing a high performance software library with MPI and CUDA for matrix computations, Computational Methods in Social Sciences, 1, 2, 1-10 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.