×

A Bayesian estimation approach for the mortality in a stage-structured demographic model. (English) Zbl 06775088

Summary: Control interventions in sustainable pest management schemes are set according to the phenology and the population abundance of the pests. This information can be obtained using suitable mathematical models that describe the population dynamics based on individual life history responses to environmental conditions and resource availability. These responses are described by development, fecundity and survival rate functions, which can be estimated from laboratory experiments. If experimental data are not available, data on field population dynamics can be used for their estimation. This is the case of the extrinsic mortality term that appears in the mortality rate function due to biotic factors. We propose a Bayesian approach to estimate the probability density functions of the parameters in the extrinsic mortality rate function, starting from data on population abundance. The method investigates the time variability in the mortality parameters by comparing simulated and observed trajectories. The grape berry moth, a pest of great importance in European vineyards, has been considered as a case study. Simulated data have been considered to evaluate the convergence of the algorithm, while field data have been used to obtain estimates of the mortality for the grape berry moth.

MSC:

62F15 Bayesian inference
92D25 Population dynamics (general)
65C05 Monte Carlo methods
62P10 Applications of statistics to biology and medical sciences; meta analysis
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

Software:

Stan; JAGS; CODA
Full Text: DOI

References:

[1] Baumgärtner J, Baronio P (1988) Modello fenologico di volo di Lobesia botrana Den. et Schiff. (Lep. Tortricidae) relativo alla situazione ambientale della Emilia-Romagna. Bollettino dell’Istituto di Entomologia. ‘Guido Grandi’ Dell’Università di Bologna 43:157-170
[2] Bieri M, Baumgärtner J, Bianchi G, Delucchi V, Von Arx R (1983) Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Mitt Schweiz Entomol Ges 56:163-171
[3] Briolini G, Di Cola G, Gilioli G (1997) Stochastic model for population development of L. botrana (Den. et Schiff.). IOBC/WPRS Bull 21:79-81
[4] Buffoni G, Pasquali S (2007) Structured population dynamics: continuous size and discontinuous stage structures. J Math Biol 54(4):555-595 · Zbl 1119.92050 · doi:10.1007/s00285-006-0058-2
[5] CABI Invasive Species Compendium (2014) Lobesia botrana (grape berry moth). www.cabi.org/isc/datasheet/42794. Accessed 14 July 2016
[6] Di Cola G, Gilioli G, Baumgärtner J (1999) Mathematical models for age-structured population dynamics. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology. Wiley, New York, pp 503-534
[7] Dorazio RM (2016) Bayesian data analysis in population ecology: motivations, methods, and benefits. Popul Ecol 58:3144 · doi:10.1007/s10144-015-0503-4
[8] Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid monte carlo. Phys Lett B 195(2):216-222 · doi:10.1016/0370-2693(87)91197-X
[9] Durham GB, Gallant AR (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J Bus Econ Stat 20:297-338 · doi:10.1198/073500102288618397
[10] EFSA Scientific Commettee (2011) Statistical significance and biological relevance. EFSA J 9(9):2372
[11] Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69:959-993 · Zbl 1017.62068 · doi:10.1111/1468-0262.00226
[12] Gardiner CW (1994) Handbook of stochastic methods. Springer, Berlin
[13] Gilioli G, Pasquali S, Marchesini E (2016) A modelling framework for pest population dynamics and management: an application to the grape berry moth. Ecol Model 320:348-357 · doi:10.1016/j.ecolmodel.2015.10.018
[14] Gilioli G, Pasquali S, Ruggeri F (2008) Bayesian inference for functional response in a stochastic predator-prey system. Bull Math Biol 70:358-381 · Zbl 1139.92026 · doi:10.1007/s11538-007-9256-3
[15] Gilioli G, Pasquali S, Ruggeri F (2012) Nonlinear functional response parameter estimation in a stochastic predator-prey model. Math Biosci Eng 9(1):75-96 · Zbl 1259.62011 · doi:10.3934/mbe.2012.9.75
[16] Gillespie CS, Golightly A (2010) Bayesian inference for generalized stochastic population growth models with applications to aphids. J R Stat Soc 59(2):341-357 · doi:10.1111/j.1467-9876.2009.00696.x
[17] Golightly A, Wilkinson D (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61:781-788 · Zbl 1079.62110 · doi:10.1111/j.1541-0420.2005.00345.x
[18] Golightly A, Wilkinson D (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput Stat Data Anal 52:1674-1693 · Zbl 1452.62603 · doi:10.1016/j.csda.2007.05.019
[19] Gutierrez AP, Ponti L, Cooper ML, Gilioli G, Baumgärtner J (2012) Prospective analysis of the invasive potential of the European grapevine moth L. Botrana (De. & Schiff.) in California. Agric For Entomol 14:225-238 · Zbl 1452.62603
[20] Heydari J, Lawless C, Lydall DA, Wilkinson DJ (2014) Fast Bayesian parameter estimation for stochastic logistic growth models. Biosystems 122:55-72 · doi:10.1016/j.biosystems.2014.05.002
[21] Hooten MB, Wikle CK (2008) A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian collared-dove. Environ Ecol Stat 15:59-70 · doi:10.1007/s10651-007-0040-1
[22] Huffaker CB, Gutierrez AP (eds) (1999) Ecological entomology. Wiley, New York
[23] Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68-75 · doi:10.1093/ee/24.1.68
[24] Lamonica D, Herbach U, Orias F, Clément B, Charles S, Lopes C (2016a) Mechanisitc modelling of daphnid-algae dynamics within a laboratory microcosm. Ecol Model 320:213-230 · doi:10.1016/j.ecolmodel.2015.09.020
[25] Lamonica D, Clément B, Charles S, Lopes C (2016b) Modelling algae-duckweed interaction under chemical pressure within a laboratory microcosm. Ecotoxicol Environ Saf 128:252-265 · doi:10.1016/j.ecoenv.2016.02.008
[26] Lanzarone E, Pasquali S, Mussi V, Ruggeri F (2014) Bayesian estimation of thermal conductivity and temperature profile in a homogeneous mass. Numer Heat Transf Part B Fundam 66(5):397-421 · doi:10.1080/10407790.2014.922848
[27] Marchesini E (2007) I limitatori naturali della tignoletta nell’agroecosistema vigneto. In: Anfora G et al (eds) Le tignole della vite. Agricoltura Integrata, Istituto Agrario di San Michele all’Adige, pp 40-55
[28] Marchesini E, Dalla Montà L (2004) Nel Veneto quattro generazioni di tignoletta della vite. Inf Agrar 60(4):75-78
[29] Martín-Fernández L, Gilioli G, Lanzarone E, Míguez J, Pasquali S, Ruggeri F, Ruiz DP (2014) A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Math Biosci Eng 11(3):573-597 · Zbl 1298.92086 · doi:10.3934/mbe.2014.11.573
[30] Martín-Fernández L, Lanzarone E (2015) A particle-filtering approach for real-time estimation of thermal conductivity and temperature tracking in homogeneous masses. Numer Heat Transf Part B Fundam 67(6):507-530 · doi:10.1080/10407790.2014.992060
[31] McDonald L, Manly B, Lockwood J, Logan JA (eds) (1989) Estimation and analysis of insect populations. Springer, Berlin · Zbl 0718.92017
[32] Metz JAJ, Diekmann O (eds) (1986) The dynamics of physiologically structured populations. Springer, Berlin · Zbl 0614.92014
[33] Pavan F, Floreani C, Barro P, Zandigiacomo P, Dalla Montà L (2010) Influence of generation and photoperiod on larval development of L. Botrana (Lepidoptera: Tortricidae). Environ Entomol 39(5):1652-1658 · doi:10.1603/EN10069
[34] Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003). Technische Universität Wien, Vienna, pp 20-22 · Zbl 1119.92050
[35] Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:711
[36] Prakasa Rao BLS (2000) Bayes estimation for some stochastic partial differential equations. J Stat Plan Inference 91(2):511-524 · Zbl 1090.62558 · doi:10.1016/S0378-3758(00)00196-8
[37] Roques L, Walker E, Franck P, Soubeyrand S, Klein EK (2016) Using genetic data to estimate diffusion rates in heterogeneous landscape. J Math Biol. doi:10.1007/s00285-015-0954-4 · Zbl 1388.35103 · doi:10.1007/s00285-015-0954-4
[38] Stan Development Team (2015) Stan modeling language users guide and reference manual (version 2.9.0) http://mc-stan.org
[39] Spence MA, Blackwell PG, Blanchard JL (2016) Parameter uncertainty of a dynamic multispecies size spectrum model. Can J Fish Aquat Sci 73(4):589-597 · doi:10.1139/cjfas-2015-0022
[40] Tsehaye I, Jones ML, Bence JR, Brenden TO, Madenjian CP, Warner DM (2014) A multispecies statistical age-structured model to assess predator-prey balance: application to an intensively managed Lake Michigan pelagic fish community. Can J Fish Aquat Sci 71(4):627-644 · doi:10.1139/cjfas-2013-0313
[41] Xun X, Cao J, Mallick B, Maity A, Carroll RJ (2013) Parameter estimation of partial differential equation models. J Am Stat Assoc 108(503):1009-1020 · Zbl 06224983 · doi:10.1080/01621459.2013.794730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.