×

Algorithmic calculus for Lie determining systems. (English) Zbl 1361.35012

Summary: The infinitesimal symmetries of differential equations (DEs) or other geometric objects provide key insight into their analytical structure, including construction of solutions and of mappings between DEs. This article is a contribution to the algorithmic treatment of symmetries of DEs and their applications. Infinitesimal symmetries obey a determining system \(L\) of linear homogeneous partial differential equations, with the property that its solution vector fields form a Lie algebra \(\mathcal{L}\). We exhibit several algorithms that work directly with the determining system without solving it. A procedure is given that can decide if a system specifies a Lie algebra \(\mathcal{L}\), if \(\mathcal{L}\) is abelian and if a system \(L^\prime\) specifies an ideal in \(\mathcal{L}\). Algorithms are described that compute determining systems for transporter, Lie product and Killing orthogonal subspace. This gives a systematic calculus for Lie determining systems, enabling computation of the determining systems for normalisers, centralisers, centre, derived algebra, solvable radical and key series (derived series, lower/upper central series). Our methods thereby give algorithmic access to new geometrical invariants of the symmetry action.

MSC:

35A30 Geometric theory, characteristics, transformations in context of PDEs
17B05 Structure theory for Lie algebras and superalgebras
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] Adams, W.; Loustaunau, P., An Introduction to Gröbner Bases (1994), AMS · Zbl 0803.13015
[2] Anderson, I. M.; Torre, C. G., New symbolic tools for differential geometry, gravitation, and field theory, J. Math. Phys., 53 (2012) · Zbl 1273.83013
[4] Blinkov, Y. A.; Cid, C. F.; Gerdt, V. P.; Plesken, W.; Robertz, D., The MAPLE package Janet: I. Polynomial systems, (Proc. 6th Int. Workshop on Computer Algebra in Scientific Computing (2003)), 31-40
[5] Blinkov, Y. A.; Cid, C. F.; Gerdt, V. P.; Plesken, W.; Robertz, D., The MAPLE package Janet: II. Linear partial differential equations, (Proc. 6th Int. Workshop on Computer Algebra in Scientific Computing (2003)), 41-54
[6] Bluman, G.; Anco, S., Symmetry and Integration Methods for Differential Equations (2002), Springer · Zbl 1013.34004
[7] Bluman, G.; Cheviakov, A.; Anco, S., Applications of Symmetry Methods to Partial Differential Equations (2010), Springer · Zbl 1223.35001
[8] Boulier, F.; Lazard, D.; Ollivier, F.; Petitot, M., Representation for the radical of a finitely generated differential ideal, (Proc. ISSAC ’95 (1995), ACM), 158-166 · Zbl 0911.13011
[9] Boulton, A., New symmetries from old: exploiting Lie algebra structure to determine infinitesimal symmetries of differential equations (1993), Dept. of Mathematics, University of British Columbia: Dept. of Mathematics, University of British Columbia Canada, Master’s thesis
[10] Bourbaki, N., Lie Groups and Lie Algebras: Chapters 1-3 (1989), Springer · Zbl 0672.22001
[11] Carminati, J.; Vu, K., Symbolic computation and differential equations: Lie symmetries, J. Symb. Comput., 29, 95-116 (2000) · Zbl 0958.68543
[12] Castro-Jiménez, F.; Moreno-Frías, M., An introduction to Janet bases and Gröbner bases, (Hermida, J.; Verschoren, A.; Granja, A., Ring Theory And Algebraic Geometry (2001), CRC Press), 133-145 · Zbl 0988.13015
[13] Cheviakov, A., GeM software package for computation of symmetries and conservation laws of differential equations, Comput. Phys. Commun., 176, 48-61 (2007) · Zbl 1196.34045
[14] Cox, D.; Little, J.; O’Shea, D., Using Algebraic Geometry (2005), Springer · Zbl 1079.13017
[15] D’Atri, J., Homomorphisms of continuous pseudogroups, Nagoya Math. J., 25, 143-163 (1965) · Zbl 0132.02201
[16] Draisma, J., Recognizing the symmetry type of O.D.E.s, J. Pure Appl. Algebra, 164, 109-128 (2001) · Zbl 1004.34023
[17] Gerdt, V. P., Completion of linear differential systems to involution, (Ganzha, V.; Mayr, E.; Vorozhtsov, E., Computer Algebra in Scientific Computing. Computer Algebra in Scientific Computing, CASC ’99 (1999), Springer-Verlag), 115-137 · Zbl 1072.12500
[18] Gilmore, R., Lie Groups, Lie Algebras, and Some of Their Applications (2005), Dover
[19] de Graaf, W., Lie Algebras: Theory and Algorithms (2000), North-Holland · Zbl 1122.17300
[20] Jacobson, N., Lie Algebras (1962), Dover · JFM 61.1044.02
[21] (Krasil’shchik, I.; Vinogradov, A., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics (1999), AMS) · Zbl 0911.00032
[22] Kuranishi, M.; Rodrigues, A., Quotients of pseudo groups by invariant fiberings, Nagoya Math. J., 24, 109-128 (1964) · Zbl 0163.45301
[23] Lemaire, F., An orderly linear PDE system with analytic initial conditions with a non-analytic solution, J. Symb. Comput., 35, 487-498 (2003) · Zbl 1070.35003
[24] Lisle, I.; Reid, G., Geometry and structure of Lie pseudogroups from infinitesimal defining systems, J. Symb. Comput., 26, 355-379 (1998) · Zbl 0926.58014
[25] Lisle, I. G.; Huang, S. L.T.; Reid, G. J., Structure of symmetry of PDE: exploiting partially integrated systems, (Proceedings of the 2014 Symposium on Symbolic-Numeric Computation (2014), ACM), 61-69 · Zbl 1346.68293
[26] Mansfield, E., Differential Gröbner bases (1991), University of Sydney, Ph.D. thesis
[27] Olver, P., Application of Lie Groups to Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0785.58003
[28] Olver, P.; Pohjanpelto, J.; Valiquette, F., On the structure of Lie pseudo-groups, SIGMA, 5, 77-90 (2009) · Zbl 1241.58008
[29] Ovsiannikov, L., Group Analysis of Differential Equations (1982), Academic Press · Zbl 0485.58002
[30] Pommaret, J. F., Systems of Partial Differential Equations and Lie Pseudogroups (1978), Gordon and Breach · Zbl 0418.35028
[31] Reid, G.; Lisle, I.; Boulton, A.; Wittkopf, A., Algorithmic determination of commutation relations for Lie symmetry algebras of PDEs, (Proc. ISSAC ’92 (1992), ACM Press), 63-68 · Zbl 0978.65514
[32] Reid, G.; Wittkopf, A.; Boulton, A., Reduction of systems of nonlinear partial differential equations to simplified involutive forms, Eur. J. Appl. Math., 7, 604-635 (1996) · Zbl 0892.35041
[33] Riquier, C., Les Systémes d’Équations aux dÉrivées Partielles (1910), Gauthier-Villars · JFM 40.0411.01
[34] Rocha Filho, T.; Figueiredo, A., [SADE]: A Maple package for the symmetry analysis of differential equations, Comput. Phys. Commun., 182, 467-476 (2011) · Zbl 1217.65165
[35] Rust, C.; Reid, G., Rankings of partial derivatives, (Proc. ISSAC ’97 (1997)), 9-16 · Zbl 0960.12003
[36] Rust, C.; Reid, G.; Wittkopf, A., Existence and uniqueness theorems for formal power series solutions of analytic differential systems, (Proc. ISSAC ’99 (1999), ACM), 105-112
[37] Schwarz, F., An algorithm for determining the size of symmetry groups, Computing, 49, 95-115 (1992) · Zbl 0759.68042
[38] Schwarz, F., Reduction and completion algorithms for partial differential equations, (Proc. ISSAC ’92 (1992), ACM Press), 49-56 · Zbl 0978.65515
[39] Schwarz, F., Algorithmic Lie Theory for Solving Ordinary Differential Equations (2008), Chapman and Hall/CRC Press · Zbl 1139.34003
[40] Singer, I.; Sternberg, S., The infinite groups of Lie and Cartan Part I, (The transitive groups), J. Anal. Math., 15, 1-114 (1965) · Zbl 0277.58008
[41] Stormark, O., Lie’s Structural Approach to PDE Systems (2000), Cambridge Univ. Press · Zbl 0959.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.