×

Compatibility complex for black hole spacetimes. (English) Zbl 1471.83015

The paper shows that the local gauge invariant quantities for linearized gravity on the Kerr spacetime presented by two of the authors [S. Aksteiner and T. Bäckdahl, “All local gauge invariants for perturbations of the Kerr spacetime”, Phys. Rev. Lett. 121, No. 5, Article ID 051104, 6 p. (2018; doi:10.1103/PhysRevLett.121.051104)] is complete.

MSC:

83C57 Black holes
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
53C80 Applications of global differential geometry to the sciences

Keywords:

black holes

Software:

Janet

References:

[1] Aksteiner, S.; Andersson, L.; Bäckdahl, T., New identities for linearized gravity on the Kerr spacetime, Phys. Rev. D, 99, 044043 (2019) · doi:10.1103/PhysRevD.99.044043
[2] Aksteiner, S., Bäckdahl, T.: All local gauge invariants for perturbations of the Kerr spacetime. Phys. Rev. Lett. 121, 051104 (2018). arXiv:1803.05341 · Zbl 1437.83006
[3] Andersson, L.; Bäckdahl, T.; Blue, P., Second order symmetry operators, Class. Quantum Gravity, 31, 135015 (2014) · Zbl 1295.35022 · doi:10.1088/0264-9381/31/13/135015
[4] Andersson, L., Bäckdahl, T., Blue, P., Ma, S.: Stability for linearized gravity on the Kerr spacetime (2019). arXiv:1903.03859 [math.AP]
[5] Bäckdahl, T., A formalism for the calculus of variations with spinors, J. Math. Phys., 57, 022502 (2016) · Zbl 1336.83032 · doi:10.1063/1.4939562
[6] Baer, C., Ginoux, N., Pfaeffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. ESI lectures in mathematics and physics, Vol. 2. European Mathematical Society (2007). arXiv:0806.1036 · Zbl 1118.58016
[7] Barack, L., Ori, A.: Gravitational selfforce and gauge transformations. Phys. Rev. D64, 124003 (2001). arXiv:gr-qc/0107056 [gr-qc]
[8] Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package Janet: I. polynomial systems. II. Linear partial differential equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, Passau (Germany), pp. 31-54. Institut für Informatik, Technische Universität München, Garching (2003)
[9] Calderbank, DMJ; Diemer, T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math., 537, 67-103 (2001) · Zbl 0985.58002
[10] Canepa, G., Dappiaggi, C., Khavkine, I.: IDEAL characterization of isometry classes of FLRW and inflationary spacetimes. Class. Quantum Gravity 35, 035013 (2018). arXiv:1704.05542 · Zbl 1382.83127
[11] Čap, A.; Slovák, J.; Souček, V., Bernstein-Gelfand-Gelfand sequences, Ann. Math., 154, 97-113 (2001) · Zbl 1159.58309 · doi:10.2307/3062111
[12] Coll, B.; Ferrando, JJ, Thermodynamic perfect fluid Its Rainich theory, J. Math. Phys., 30, 2918-2922 (1989) · Zbl 0691.76134 · doi:10.1063/1.528477
[13] Douglis, A.; Nirenberg, L., Interior estimates for elliptic systems of partial differential equations, Commun. Pure Appl. Math., 8, 503-538 (1955) · Zbl 0066.08002 · doi:10.1002/cpa.3160080406
[14] Ferrando, JJ; Sáez, JA, An intrinsic characterization of the Schwarzschild metric, Class. Quantum Gravity, 15, 1323-1330 (1998) · Zbl 0937.83006 · doi:10.1088/0264-9381/15/5/014
[15] Ferrando, JJ; Sáez, JA, An intrinsic characterization of the Kerr metric, Class. Quantum Gravity, 26, 075013 (2009) · Zbl 1161.83363 · doi:10.1088/0264-9381/26/7/075013
[16] Ferrando, JJ; Sáez, JA, An intrinsic characterization of spherically symmetric spacetimes, Class. Quantum Gravity, 27, 205024 (2010) · Zbl 1202.83023 · doi:10.1088/0264-9381/27/20/205024
[17] Fröb, M.B., Hack, T.-P., Higuchi, A.: Compactly supported linearised observables in single-field inflation. J. Cosmol. Astropart. Phys. 2017, 043 (2017). arXiv:1703.01158 · Zbl 1515.83351
[18] Fröb, M.B., Hack, T.-P., Khavkine, I.: Approaches to linear local gauge-invariant observables in inflationary cosmologies. Class. Quantum Gravity 35, 115002 (2018). arXiv:1801.02632 · Zbl 1393.83034
[19] Goldschmidt, H., Existence theorems for analytic linear partial differential equations, Ann. Math., 86, 246-270 (1967) · Zbl 0154.35103 · doi:10.2307/1970689
[20] Jezierski, J.: Energy an angular momentum of the weak gravitational waves on the Schwarzschild backround-quasilocal gauge-invariant formulation. General Relat. Gravitat. 31, 1855 (1999). arXiv:gr-qc/9801068 · Zbl 0952.83020
[21] Khavkine, I., Cohomology with causally restricted supports, Ann. Henri Poincaré, 17, 3577-3603 (2016) · Zbl 1354.81042 · doi:10.1007/s00023-016-0481-x
[22] Khavkine, I., The Calabi complex and Killing sheaf cohomology, J. Geom. Phys., 113, 131-169 (2017) · Zbl 1364.53066 · doi:10.1016/j.geomphys.2016.06.009
[23] Khavkine, I.: Compatibility complexes of overdetermined PDEs of finite type, with applications to the Killing equation. Class. Quantum Gravity 36, 185012 (2019). arXiv:1805.03751 · Zbl 1478.83069
[24] Khavkine, I.: IDEAL characterization of higher dimensional spherically symmetric black holes. Class. Quantum Gravity 36, 045001 (2019). arXiv:1807.09699 · Zbl 1476.83089
[25] Kruglikov, BS; Lychagin, VV; Krupka, D.; Saunders, D., Geometry of differential equations, Handbook of Global Analysis, 725-771 (2008), Amsterdam: Elsevier, Amsterdam · Zbl 1236.58039 · doi:10.1016/B978-044452833-9.50015-2
[26] Martel, K.; Poisson, E., Gravitational perturbations of the Schwarzschild spacetime: a practical covariant and gauge-invariant formalism, Phys. Rev. D, 71, 104003 (2005) · doi:10.1103/PhysRevD.71.104003
[27] Merlin, C., Ori, A., Barack, L., Pound, A., van de Meent, M.: Completion of metric reconstruction for a particle orbiting a Kerr black hole. Phys. Rev. D 94, 104066 (2016). arXiv:1609.01227
[28] Penrose, R.; Rindler, W., Spinors and Space-time I & II. Cambridge Monographs on Mathematical Physics (1986), Cambridge: Cambridge University Press, Cambridge · Zbl 0591.53002 · doi:10.1017/CBO9780511524486
[29] Pommaret, J.-F.: Minkowski, Schwarzschild and Kerr metrics revisited. J. Mod. Phys. 9, 1970-2007 (2018). arXiv:1805.11958 [physics.gen-ph]
[30] Pommaret, J.-F.: Generating compatibility conditions and general relativity. J. Mod. Phys. 10, 371-401 (2019). arXiv:1811.12186 [math.DG]
[31] Pommaret, J.F.: “A mathematical comparison of the Schwarzschild and Kerr metrics (2020). arXiv:2010.07001
[32] Pound, A.; Merlin, C.; Barack, L., Gravitational self-force from radiation-gauge metric perturbations, Phys. Rev. D, 89, 024009 (2014) · doi:10.1103/PhysRevD.89.024009
[33] Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra, Algorithms and Computation in Mathematics, vol. 24. Springer (2010) · Zbl 1205.35003
[34] Shah, A.G., Whiting, B.F., Aksteiner, S., Andersson, L., Bäckdahl, T. : Gauge-invariant perturbations of Schwarzschild spacetime (2016), arXiv:1611.08291
[35] Spencer, DC, Overdetermined systems of linear partial differential equations, Bull. Am. Math. Soc., 75, 179-240 (1969) · Zbl 0185.33801 · doi:10.1090/S0002-9904-1969-12129-4
[36] Stewart, JM; Walker, M., Perturbations of space-times in general relativity, Proc. R. Soc. Lond. A Math. Phys. Sci., 341, 49-74 (1974)
[37] Tarkhanov, NN, Complexes of Differential Operators, Mathematics and Its Applications (1995), Dordrecht: Kluwer, Dordrecht · Zbl 0852.58076 · doi:10.1007/978-94-011-0327-5
[38] Thompson, JE; Chen, H.; Whiting, BF, Gauge invariant perturbations of the Schwarzschild spacetime, Class. Quantum Gravity, 34, 174001 (2017) · Zbl 1372.83051 · doi:10.1088/1361-6382/aa7f5b
[39] Thompson, JE; Wardell, B.; Whiting, BF, Gravitational self-force regularization in the Regge-Wheeler and easy gauges, Phys. Rev. D, 99, 124046 (2019) · doi:10.1103/PhysRevD.99.124046
[40] Walker, M.; Penrose, R., On quadratic first integrals of the geodesic equations for type \(\{2,2\}\) spacetimes, Commun. Math. Phys., 18, 265-274 (1970) · Zbl 0197.26404 · doi:10.1007/BF01649445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.