×

A 3D front-tracking approach for simulation of a two-phase fluid with insoluble surfactant. (English) Zbl 1351.76134

Summary: Surface active agents play a significant role in interfacial dynamics of multiphase systems. While the understanding of their behavior is crucial to many important practical applications, realistic mathematical modeling and computer simulation represent an extraordinary task. By employing a front-tracking method with Eulerian adaptive mesh refinement capabilities in concert with a finite volume scheme for solving an advection-diffusion equation constrained to a moving and deforming interface, the numerical challenges posed by the full three-dimensional computer simulation of transient, incompressible two-phase flows with an insoluble surfactant are efficiently and accurately tackled in the present work. The individual numerical components forming the resulting methodology are here combined and applied for the first time. Verification tests to check the accuracy and the simulation of the deformation of a droplet in simple shear flow in the presence of an insoluble surfactant are performed, the results being compared to laboratory experiments as well as to other numerical data. In all the cases considered, the methodology presents excellent conservation properties for the total surfactant mass (even to machine precision under certain circumstances).

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76Txx Multiphase and multicomponent flows
76F10 Shear flows and turbulence

Software:

QSHEP2D; QSHEP3D; CPT
Full Text: DOI

References:

[1] Adami, S.; Hu, X.; Adams, N., A conservative {SPH} method for surfactant dynamics, J. Comput. Phys., 229, 5, 1909-1926 (2010) · Zbl 1329.76281
[2] Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0123.41502
[3] Bazhlekov, I. B.; Anderson, P. D.; Meijer, H. E., Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow, J. Colloid Interface Sci., 298, 1, 369-394 (2006)
[4] Berger, M.; Rigoutsos, I., An algorithm for point clustering and grid generation, IEEE Trans. Syst. Man Cybern., 21, 5, 1278-1286 (1991)
[5] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 1, 64-84 (1989) · Zbl 0665.76070
[6] Botsch, M.; Kobbelt, L., A remeshing approach to multiresolution modeling, (Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. SGP ’04 (2004), ACM: ACM New York, NY, USA), 185-192
[7] Ceniceros, H. D., The effects of surfactants on the formation and evolution of capillary waves, Phys. Fluids, 15, 1, 245-256 (2003) · Zbl 1185.76078
[8] Ceniceros, H. D.; Nós, R. L.; Roma, A. M., Three-dimensional, fully adaptive simulations of phase-field fluid models, J. Comput. Phys., 229, 17, 6135-6155 (2010) · Zbl 1425.76179
[9] Ceniceros, H. D.; Roma, A. M., A multi-phase flow method with a fast, geometry-based fluid indicator, J. Comput. Phys., 205, 2, 391-400 (2005) · Zbl 1087.76578
[10] Ceniceros, H. D.; Roma, A. M.; Silveira-Neto, A.; Villar, M. M., A robust, fully adaptive hybrid level-set/front-tracking method for two-phase flows with an accurate surface tension computation, Commun. Comput. Phys., 8, 1, 51-94 (2010) · Zbl 1364.76154
[11] Chaffey, C. E.; Brenner, H., A second-order theory for shear deformation of drops, J. Colloid Interface Sci., 24, 2, 258-269 (1967)
[12] Drumright-Clarke, M. A.; Renardy, Y., The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia, Phys. Fluids, 16, 1, 14-21 (2004) · Zbl 1186.76152
[13] Dziuk, G.; Elliott, C. M., Finite elements on evolving surfaces, IMA J. Numer. Anal., 27, 2, 262-292 (2007) · Zbl 1120.65102
[14] Erhel, J.; Burrage, K.; Pohl, B., Restarted {GMRES} preconditioned by deflation, J. Comput. Appl. Math., 69, 2, 303-318 (1996) · Zbl 0854.65025
[15] Feigl, K.; Megias-Alguacil, D.; Fischer, P.; Windhab, E. J., Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants, Chem. Eng. Sci., 62, 12, 3242-3258 (2007)
[16] Freitas, S.; Merkle, H. P.; Gander, B., Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology, J. Control. Release, 102, 2, 313-332 (2005)
[17] Frijters, S.; Gunther, F.; Harting, J., Effects of nanoparticles and surfactant on droplets in shear flow, Soft Matter, 8, 6542-6556 (2012)
[18] Ganesan, S.; Tobiska, L., A coupled arbitrary Lagrangian-Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants, J. Comput. Phys., 228, 8, 2859-2873 (2009) · Zbl 1282.76118
[19] Griese, M., Pulmonary surfactant in health and human lung diseases: state of the art, Eur. Respir. J., 13, 6, 1455-1476 (1999)
[20] Hameed, M.; Siegel, M.; Young, Y. N.; Li, J.; Booty, M. R.; Papageorgiou, D., Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid, J. Fluid Mech., 594, 307 (2008) · Zbl 1159.76315
[21] Huang, H.; Lai, M.; Tseng, H., A parametric derivation of the surfactant transport equation along a deforming fluid interface, (Frontiers of Applied and Computational Mathematics (2008), World Scientific), 198-205 · Zbl 1419.35161
[22] Huang, W.; Russell, R. R.D., Adaptive Moving Mesh Methods, vol. 174 (2011), Springer · Zbl 1227.65090
[23] James, A. J.; Lowengrub, J., A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant, J. Comput. Phys., 201, 2, 685-722 (2004) · Zbl 1061.76062
[24] Khatri, S.; Tornberg, A.-K., A numerical method for two phase flows with insoluble surfactants, Comput. Fluids, 49, 1, 150-165 (2011) · Zbl 1271.76209
[25] Kralova, I.; Sjöblom, J., Surfactants used in food industry: a review, J. Dispers. Sci. Technol., 30, 9, 1363-1383 (2009)
[26] Lai, M.-C.; Huang, C.-Y.; Huang, Y.-M., Simulating the axisymmetric interfacial flows with insoluble surfactant by immered boundary method, Int. J. Numer. Anal. Model., 8, 1, 105-117 (2011) · Zbl 1208.76099
[27] Lai, M.-C.; Tseng, Y.-H.; Huang, H., An immersed boundary method for interfacial flows with insoluble surfactant, J. Comput. Phys., 227, 15, 7279-7293 (2008) · Zbl 1201.76182
[28] Lee, J.; Pozrikidis, C., Effect of surfactants on the deformation of drops and bubbles in Navier-Stokes flow, Comput. Fluids, 35, 1, 43-60 (2006) · Zbl 1134.76324
[29] Lenz, M.; Nemadjieu, S.; Rumpf, M., A convergent finite volume scheme for diffusion on evolving surfaces, SIAM J. Numer. Anal., 49, 1, 15-37 (2011) · Zbl 1254.65095
[30] Li, X.; Pozrikidis, C., The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow, J. Fluid Mech., 341, 1, 165-194 (1997) · Zbl 0892.76013
[32] Milnor, J. W.; Stasheff, J. D., Characteristic Classes, vol. 93 (1974), Princeton University Press: Princeton University Press Princeton · Zbl 0298.57008
[33] Miura, H.; Kimoto, M., A comparison of grid quality of optimized spherical hexagonal-pentagonal geodesic grids, Mon. Weather Rev., 133, 10, 2817-2833 (2005)
[34] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 3, 220-252 (1997) · Zbl 0403.76100
[35] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 0, 479-517 (2002) · Zbl 1123.74309
[36] Pivello, M.; Villar, M.; Serfaty, R.; Roma, A.; Silveira-Neto, A., A fully adaptive front tracking method for the simulation of two phase flows, Int. J. Multiph. Flow, 58, 72-82 (2014)
[37] Pivello, M. R.; Julho, A fully adaptive front tracking method for the simulation of 3d two-phase flows (2012), Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia: Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia Brasil, Ph.D. thesis
[38] Pozrikidis, C., A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop, J. Eng. Math., 49, 2, 163-180 (2004) · Zbl 1041.76543
[39] Pozrikidis, C., Introduction to Theoretical and Computational Fluid Dynamics (2011), Oxford University Press · Zbl 1238.76001
[40] Renka, R. J., Interpolation of data on the surface of a sphere, ACM Trans. Math. Softw., 10, 4, 417-436 (1984) · Zbl 0548.65001
[41] Renka, R. J., Algorithm 660: Qshep2d: quadratic shepard method for bivariate interpolation of scattered data, ACM Trans. Math. Softw., 14, 2, 149-150 (1988) · Zbl 0709.65504
[42] Renka, R. J., Multivariate interpolation of large sets of scattered data, ACM Trans. Math. Softw., 14, 2, 139-148 (1988) · Zbl 0642.65006
[43] Roma, A.; Peskin, C.; Berger, M., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 2, 509-534 (1999), 145 · Zbl 0953.76069
[44] Rosen, M. J.; Kunjappu, J. T., Surfactants and Interfacial Phenomena (2012), John Wiley & Sons
[45] Rosenberg, S., The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds, vol. 31 (1997), Cambridge University Press · Zbl 0868.58074
[46] Scriven, L. E., Dynamics of a fluid interface, Chem. Eng. Sci., 12, 98 (1960)
[47] Singh, R.; Shyy, W., Three-dimensional adaptive Cartesian grid method with conservative interface restructuring and reconstruction, J. Comput. Phys., 224, 1, 150-167 (2007) · Zbl 1248.76111
[48] Slattery, J. C., Interfacial Transport Phenomena (1990), Springer-Verlag: Springer-Verlag New York
[49] Stone, H., A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface, Phys. Fluids A, Fluid Dyn., 2, 1, 111-112 (1990)
[50] Subramanian, V., Discrete Calculus Methods and Their Implementation (2007), University of Massachusetts: University of Massachusetts Amherst
[52] Teigen, K.; Munkejord, S., Influence of surfactant on drop deformation in an electric field, Phys. Fluids, 22, 11 (2010)
[53] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 2, 708-759 (2001) · Zbl 1047.76574
[54] Tryggvason, G.; Scardovelli, R., Direct Numerical Simulations of Gas-Liquid Multiphase Flows (2011), Cambridge University Press · Zbl 1226.76001
[55] Unverdi, S. A.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[56] Vanderzee, E.; Hirani, A. N.; Guoy, D.; Ramos, E. A., Well-centered triangulation, SIAM J. Sci. Comput., 31, 6, 4497-4523 (2010) · Zbl 1253.65030
[57] Vermant, J.; Van Puyvelde, P.; Moldenaers, P.; Mewis, J.; Fuller, G. G., Anisotropy and orientation of the microstructure in viscous emulsions during shear flow, Langmuir, 14, 7, 1612-1617 (1998)
[58] Waxman, A. M., Dynamics of a couple-stress fluid membrane, Stud. Appl. Math., 70, 1, 63-86 (1984) · Zbl 0546.76007
[59] Weatherburn, C. E., Differential Geometry of Three Dimensions, vol. I (1939), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0023.04203
[60] Wong, H.; Rumschitzki, D.; Maldarelli, C., On the surfactant mass balance at a deforming fluid interface, Phys. Fluids, 8, 11, 3203-3204 (1996) · Zbl 1027.76667
[61] Xu, J.-J.; Li, Z.; Lowengrub, J.; Zhao, H., A level-set method for interfacial flows with surfactant, J. Comput. Phys., 212, 2, 590-616 (2006) · Zbl 1161.76548
[62] Xu, J.-J.; Yang, Y.; Lowengrub, J., A level-set continuum method for two-phase flows with insoluble surfactant, J. Comput. Phys., 231, 17, 5897-5909 (2012) · Zbl 1522.76105
[63] Yang, X.; James, A., An arbitrary Lagrangian-Eulerian (ALE) method for interfacial flows with insoluble surfactants, Fluid Dyn. Mater. Proc., 3, 65-96 (2007) · Zbl 1153.76401
[64] Yokoi, K., A numerical method for free-surface flows and its application to droplet impact on a thin liquid layer, J. Sci. Comput., 35, 2, 372-396 (2008) · Zbl 1203.76123
[65] Yon, S.; Pozrikidis, C., A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop, Comput. Fluids, 27, 8, 879-902 (1998) · Zbl 0978.76058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.