×

Galaxy number counts at second order in perturbation theory: a leading-order term comparison. (English) Zbl 1479.85002

Summary: The Galaxy number density is a key quantity to compare theoretical predictions to the observational data from current and future large scale structure surveys. The precision demanded by these stage IV surveys requires the use of second order cosmological perturbation theory. Based on the independent calculation published previously, we present the result of the comparison with the results of three other groups at leading order. Overall we find that the differences between the different approaches lie mostly on the definition of certain quantities, where the ambiguity of signs results in the addition of extra terms at second order in perturbation theory.

MSC:

85A04 General questions in astronomy and astrophysics
85A15 Galactic and stellar structure
93C73 Perturbations in control/observation systems

Software:

xAct

References:

[1] Scaramella, R.; Euclid, 306, p 375 (2015)
[2] Santos, M. G.; MeerKLASS, MeerKAT science: on the pathway to the SKA (2017)
[3] Maartens, R.; Abdalla, F. B.; Jarvis, M.; Santos, M. G.; SKA Cosmology SWG, p 016 (2015)
[4] Abell, P. A.; LSST Science, LSST Project (2009)
[5] Levi, M. E.; DESI (2019)
[6] Benitez, N.; J-PAS (2014)
[7] Green, J. (2012)
[8] Dio, E. D.; Durrer, R.; Marozzi, G.; Montanari, F.; Dio, E. D.; Durrer, R.; Marozzi, G.; Montanari, F., J. Cosmol. Astropart. Phys.. J. Cosmol. Astropart. Phys. (2015) · doi:10.1088/1475-7516/2015/06/e01
[9] Bertacca, D.; Maartens, R.; Clarkson, C., J. Cosmol. Astropart. Phys. (2014) · doi:10.1088/1475-7516/2014/09/037
[10] Bertacca, D.; Maartens, R.; Clarkson, C., J. Cosmol. Astropart. Phys. (2014) · doi:10.1088/1475-7516/2014/11/013
[11] Yoo, J.; Zaldarriaga, M., Phys. Rev. D, 90 (2014) · doi:10.1103/physrevd.90.023513
[12] Nielsen, J. T.; Durrer, R., J. Cosmol. Astropart. Phys. (2017) · Zbl 1515.83416 · doi:10.1088/1475-7516/2017/03/010
[13] Fuentes, J. L.; Hidalgo, J. C.; Malik, K. A., Class. Quantum Grav., 38 (2021) · Zbl 1479.83254 · doi:10.1088/1361-6382/abd95c
[14] Fuentes, J. L., PhD Thesis (2020), London, UK
[15] Malik, K. A.; Wands, D., Phys. Rep., 475, 1 (2009) · doi:10.1016/j.physrep.2009.03.001
[16] Bonvin, C.; Durrer, R., Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.063505
[17] Yoo, J., Class. Quantum Grav., 31 (2014) · Zbl 1306.83013 · doi:10.1088/0264-9381/31/23/234001
[18] Umeh, O.; Clarkson, C.; Maartens, R., Class. Quantum Grav., 31 (2014) · Zbl 1307.83055 · doi:10.1088/0264-9381/31/20/205001
[19] Ellis, G.; Maartens, R.; MacCallum, M., Relativistic Cosmology (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1242.83001
[20] Borges, H. A.; Wands, D., Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.103519
[21] Dio, E. D.; Durrer, R.; Marozzi, G.; Montanari, F., J. Cosmol. Astropart. Phys. (2016) · doi:10.1088/1475-7516/2016/01/016
[22] Dio, E. D.; Durrer, R.; Maartens, R.; Montanari, F.; Umeh, O., J. Cosmol. Astropart. Phys. (2019) · doi:10.1088/1475-7516/2019/04/053
[23] Martinez-Carrillo, R.; De-Santiago, J.; Hidalgo, J. C.; Malik, K. A., J. Cosmol. Astropart. Phys. (2020) · Zbl 1491.83005 · doi:10.1088/1475-7516/2020/04/028
[24] Martín-García, J. M., xAct: efficient tensor computer algebra for the Wolfram language (2016)
[25] Pitrou, C.; Roy, X.; Umeh, O., Class. Quantum Grav., 30 (2013) · Zbl 1273.83195 · doi:10.1088/0264-9381/30/16/165002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.