×

Nonlinear radiation gauge for near Kerr spacetimes. (English) Zbl 1512.83003

Summary: In this paper, we introduce and explore the properties of a new gauge choice for the vacuum Einstein equation inspired by the ingoing and outgoing radiation gauges (IRG, ORG) for the linearized vacuum Einstein equation introduced by P. L. Chrzanowski in his work on metric reconstruction [Phys. Rev. D (3)11, No. 8, 2042–2062 (1975; doi:10.1103/PhysRevD.11.2042)] on the Kerr background. It has been shown by PL. R. Price et al. [Classical Quantum Gravity 24, No. 9, 2367–2388 (2007; Zbl 1115.83014)] that the IRG/ORG are consistent gauges for the linearized vacuum Einstein equation on Petrov type II backgrounds. In [L. Andersson et al., “Stability for linearized gravity on the Kerr spacetime”, Preprint, arXiv:1903.03859], the ORG was used in proving linearized stability for the Kerr spacetime, and the new non-linear radiation gauge introduced here is a direct generalization of that gauge condition, and is intended to be used to study the stability of Kerr black holes under the evolution generated by the vacuum Einstein equation.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
83C57 Black holes

Citations:

Zbl 1115.83014

Software:

xAct

References:

[1] Andersson, L., Bäckdahl, T., Blue, P., Ma, S.: Stability for linearized gravity on the Kerr spacetime (2019). arXiv:1903.03859 [math.AP]
[2] Andersson, L.; Blue, P., Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. Math. (2), 182, 787-853 (2015) · Zbl 1373.35307 · doi:10.4007/annals.2015.182.3.1
[3] Andersson, L.; Blue, P., Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, J. Hyperbolic Differ. Equ., 12, 689-743 (2015) · Zbl 1338.83094 · doi:10.1142/S0219891615500204
[4] Bäckdahl, T., Aksteiner, S.: SpinFrames (2015-2021). http://xact.es/SpinFrames
[5] Blue, P., Decay of the Maxwell field on the Schwarzschild manifold, J. Hyperbolic Differ. Equ., 5, 807-856 (2008) · Zbl 1169.35057 · doi:10.1142/S0219891608001714
[6] Blue, P.; Soffer, A., Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates, Adv. Differ. Equ., 8, 595-614 (2003) · Zbl 1044.58033
[7] Blue, P.; Soffer, A., A space-time integral estimate for a large data semi-linear wave equation on the Schwarzschild manifold, Lett. Math. Phys., 81, 227-238 (2007) · Zbl 1137.58011 · doi:10.1007/s11005-007-0177-8
[8] Blue, P.; Sterbenz, J., Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space, Commun. Math. Phys., 268, 481-504 (2006) · Zbl 1123.58018 · doi:10.1007/s00220-006-0101-6
[9] Campanelli, M.; Lousto, CO, Second order gauge invariant gravitational perturbations of a Kerr black hole, Phys. Rev. D, 59, 124022 (1999) · doi:10.1103/PhysRevD.59.124022
[10] Chrzanowski, PL, Vector potential and metric perturbations of a rotating black hole, Phys. Rev. D, 11, 2042-2062 (1975) · doi:10.1103/PhysRevD.11.2042
[11] Dafermos, M.; Holzegel, G.; Rodnianski, I., Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case \(|a|\ll M\), Ann. PDE, 5, 2199-2576 (2019) · Zbl 1428.35585 · doi:10.1007/s40818-018-0058-8
[12] Dafermos, M.; Holzegel, G.; Rodnianski, I., The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., 222, 1-214 (2019) · Zbl 1419.83023 · doi:10.4310/ACTA.2019.v222.n1.a1
[13] Dafermos, M., Holzegel, G., Rodnianski, I., Taylor, M.: The non-linear stability of the Schwarzschild family of black holes (2021). arXiv:2104.08222 [gr-qc]
[14] Dafermos, M.; Rodnianski, I., The red-shift effect and radiation decay on black hole spacetimes, Commun. Pure Appl. Math., 62, 859-919 (2009) · Zbl 1169.83008 · doi:10.1002/cpa.20281
[15] Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes. III: The full subextremal case \(|a| \le M\). Ann. Math. (2) 183, 787-913 (2016). arXiv:1402.7034 [gr-qc] · Zbl 1347.83002
[16] Geroch, R.; Held, A.; Penrose, R., A space-time calculus based on pairs of null directions, J. Math. Phys., 14, 874-881 (1973) · Zbl 0875.53014 · doi:10.1063/1.1666410
[17] Giorgi, E.: The Carter tensor and the physical-space analysis in perturbations of Kerr-Newman spacetime (2021). arXiv:2105.14379 [gr-qc]
[18] Green, SR; Hollands, S.; Zimmerman, P., Teukolsky formalism for nonlinear Kerr perturbations, Class. Quant. Grav., 37, 075001 (2020) · Zbl 1479.83140 · doi:10.1088/1361-6382/ab7075
[19] Häfner, D., Hintz, P., Vasy, A.: Linear stability of slowly rotating Kerr black holes, Inventiones mathematicae (2020). doi:10.1007/s00222-020-01002-4, arXiv:1906.00860 [math.AP]
[20] Held, A., A formalism for the investigation of algebraically special metrics. I, Commun. Math. Phys., 37, 311-326 (1974) · doi:10.1007/BF01645944
[21] Hung, P-K; Keller, J.; Wang, M-T, Linear stability of Schwarzschild spacetime: Decay of metric coefficients, J. Diff. Geom., 116, 481-541 (2020) · Zbl 1482.53084
[22] Klainerman, S., Szeftel, J.: Global nonlinear stability of schwarzschild spacetime under polarized perturbations. In: Annals of Math Studies, vol. 210, pp. xviii+856. Princeton University Press, Princeton (2020). arXiv:1711.07597 [gr-qc] · Zbl 1469.83002
[23] Klainerman, S., Szeftel, J.: Kerr stability for small angular momentum (2021). arXiv:2104.11857 [math.AP]
[24] Loutrel, N.; Ripley, JL; Giorgi, E.; Pretorius, F., Second order perturbations of Kerr Black holes: reconstruction of the metric, Phys. Rev. D, 103, 104017 (2021) · doi:10.1103/PhysRevD.103.104017
[25] Ma, S.: Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole I: Maxwell field, Annales Henri Poincaré 21 (2020). doi:10.1007/s00023-020-00884-7, arXiv:1705.06621 [gr-qc] · Zbl 1437.83065
[26] Ma, S., Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity, Commun. Math. Phys., 377, 2489-2551 (2020) · Zbl 1443.83036 · doi:10.1007/s00220-020-03777-2
[27] Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. In: Applied Mathematical Sciences, vol. 53, pp. viii+159. Springer, New York (1984) · Zbl 0537.76001
[28] Martín-García, J.M.: xAct: Efficient tensor computer algebra for the Wolfram Language, (2002-2021). http://www.xact.es
[29] O’Neill, B.: The geometry of Kerr black holes, pp. xviii+381. A K Peters, Ltd., Wellesley (1995) · Zbl 0828.53078
[30] Pasqualotto, F., The spin \(\pm 1\) Teukolsky equations and the Maxwell system on Schwarzschild, Ann. Henri Poincaré, 20, 1263-1323 (2019) · Zbl 1416.83024 · doi:10.1007/s00023-019-00785-4
[31] Penrose, R., Rindler, W.: Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, pp. x+458, two-spinor calculus and relativistic fields. Cambridge University Press, Cambridge (1987)
[32] Price, LR; Shankar, K.; Whiting, BF, On the existence of radiation gauges in Petrov type II spacetimes, Class. Quantum Gravity, 24, 2367-2388 (2007) · Zbl 1115.83014 · doi:10.1088/0264-9381/24/9/014
[33] Shlapentokh-Rothman, Y., Teixeira da Costa, R.: Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range \(|a|\le M\): frequency space analysis (2020). arXiv:2007.07211 [gr-qc]
[34] Tataru, D.; Tohaneanu, M., A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not., 201, 248-292 (2011) · Zbl 1209.83028
[35] Teukolsky, SA, Rotating black holes: separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett., 29, 1114-1118 (1972) · doi:10.1103/PhysRevLett.29.1114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.