×

Classification of primary constraints of quadratic non-metricity theories of gravity. (English) Zbl 1460.83065

Summary: We perform the ADM decomposition of a five-parameter family of quadratic non-metricity theories and study their conjugate momenta. After systematically identifying all possible conditions which can be imposed on the parameters such that different sets of primary constraints arise, we find that the five-parametric theory space can be compartmentalized into nine different sectors, based on the presence or absence of primary constraints. This classification allows to dismiss certain classes of theories as unphysical and invites further investigations into the remaining sectors, which may contain phenomenologically interesting modifications of General Relativity.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C40 Gravitational energy and conservation laws; groups of motions
83C45 Quantization of the gravitational field
53Z05 Applications of differential geometry to physics

Software:

xAct

References:

[1] Aldrovandi, R.; Pereira, JG, Teleparallel gravity (2013), Germany: Springer, Germany · Zbl 1259.83002 · doi:10.1007/978-94-007-5143-9
[2] Y.-F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis, f (T) teleparallel gravity and cosmology, Rept. Prog. Phys.79 (2016) 106901 [arXiv:1511.07586] [INSPIRE].
[3] Krssak, M.; van den Hoogen, RJ; Pereira, JG; Böhmer, CG; Coley, AA, Teleparallel theories of gravity: illuminating a fully invariant approach, Class. Quant. Grav., 36 (2019) · Zbl 1478.83205 · doi:10.1088/1361-6382/ab2e1f
[4] Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, TS, Teleparallel Palatini theories, JCAP, 08, 039 (2018) · Zbl 1536.83106 · doi:10.1088/1475-7516/2018/08/039
[5] Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T., Coincident general relativity, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.044048
[6] Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, TS; Pekar, S., Cosmology in f (Q) geometry, Phys. Rev. D, 101, 103507 (2020) · doi:10.1103/PhysRevD.101.103507
[7] P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math.2 (1950) 129. · Zbl 0036.14104
[8] Anderson, JL; Bergmann, PG, Constraints in covariant field theories, Phys. Rev., 83, 1018 (1951) · Zbl 0045.45505 · doi:10.1103/PhysRev.83.1018
[9] Dirac, PAM, Lectures on quantum mechanics (1964), Boston, U.S.A: Dover Publications, Boston, U.S.A
[10] J. M. Martín-García, xAct: efficient tensor computer algebra for the Wolfram Language, http://www.xact.es/.
[11] F. D’Ambrosio, M. Garg, L. Heisenberg and S. Zentarra, ADM formulation and Hamiltonian analysis of coincident general relativity, arXiv:2007.03261 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.