×

FormTracer. A Mathematica tracing package using FORM. (English) Zbl 1411.22001

Summary: We present FormTracer, a high-performance, general purpose, easy-to-use Mathematica tracing package which uses FORM. It supports arbitrary space and spinor dimensions as well as an arbitrary number of simple compact Lie groups. While keeping the usability of the Mathematica interface, it relies on the efficiency of FORM. An additional performance gain is achieved by a decomposition algorithm that avoids redundant traces in the product tensors spaces. FormTracer supports a wide range of syntaxes which endows it with a high flexibility. Mathematica notebooks that automatically install the package and guide the user through performing standard traces in space-time, spinor and gauge-group spaces are provided.

MSC:

22-04 Software, source code, etc. for problems pertaining to topological groups
81T18 Feynman diagrams
81-08 Computational methods for problems pertaining to quantum theory

References:

[1] Harlander, R.; Steinhauser, M., Prog. Part. Nucl. Phys., 43, 167-228 (1999)
[2] Baur, U., Internat. J. Modern Phys. E, 17, 826-844 (2008)
[3] G. Luisoni, S. Poslavsky, Y. Schroder, 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2016, Valparaiso, Chile, January 18-22, 2016, 2016. arXiv:1604.03370; G. Luisoni, S. Poslavsky, Y. Schroder, 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2016, Valparaiso, Chile, January 18-22, 2016, 2016. arXiv:1604.03370
[4] Berges, J.; Tetradis, N.; Wetterich, C., Phys. Rep., 363, 223-386 (2002) · Zbl 0994.81077
[5] Roberts, C. D.; Schmidt, S. M., Prog. Part. Nucl. Phys., 45, S1-S103 (2000)
[6] Alkofer, R.; von Smekal, L., Phys. Rep., 353, 281 (2001) · Zbl 0988.81551
[7] Pawlowski, J. M., Ann. Physics, 322, 2831-2915 (2007) · Zbl 1132.81041
[8] Fischer, C. S., J. Phys. G, G32, R253-R291 (2006)
[9] Gies, H., Lecture Notes in Phys., 852, 287-348 (2012) · Zbl 1257.81058
[10] Schaefer, B.-J.; Wambach, J., Phys. Part. Nucl., 39, 1025-1032 (2008)
[11] Binosi, D.; Papavassiliou, J., Phys. Rep., 479, 1-152 (2009)
[12] Braun, J., J. Phys. G, G39, 033001 (2012)
[13] Maas, A., Phys. Rep., 524, 203-300 (2013)
[14] Eichmann, G.; Sanchis-Alepuz, H.; Williams, R.; Alkofer, R.; Fischer, C. S., Prog. Part. Nucl. Phys., 91, 1-100 (2016)
[15] Windisch, A.; Hopfer, M.; Alkofer, R., Acta Phys. Polon. Supp., 6, 347-352 (2013)
[16] Eichmann, G.; Williams, R.; Alkofer, R.; Vujinovic, M., Phys. Rev., D 89, 105014 (2014)
[17] Williams, R., Eur. Phys. J., A 51, 5, 57 (2015)
[18] Gracey, J., Phys. Rev., D 90, 025014 (2014)
[19] Cyrol, A. K.; Huber, M. Q.; von Smekal, L., Eur. Phys. J., C 75, 102 (2015)
[20] Mitter, M.; Pawlowski, J. M.; Strodthoff, N., Phys. Rev., D 91, 054035 (2015)
[21] Williams, R.; Fischer, C. S.; Heupel, W., Phys. Rev., D 93, 3, 034026 (2016)
[22] Huber, M. Q., Phys. Rev., D 93, 8, 085033 (2016)
[23] Cyrol, A. K.; Fister, L.; Mitter, M.; Pawlowski, J. M.; Strodthoff, N., Phys. Rev., D 94, 5, 054005 (2016)
[24] J. Vermaseren, New features of FORM, arXiv:math-ph/0010025; J. Vermaseren, New features of FORM, arXiv:math-ph/0010025 · Zbl 1309.68231
[25] Kuipers, J.; Ueda, T.; Vermaseren, J. A.M.; Vollinga, J., Comput. Phys. Comm., 184, 1453-1467 (2013) · Zbl 1317.68286
[26] Kuipers, J.; Ueda, T.; Vermaseren, J. A.M., Comput. Phys. Comm., 189, 1-19 (2015) · Zbl 1344.65050
[27] fQCD Collaboration, J. Braun, L. Corell, A.K. Cyrol, W.-J. Fu, M. Leonhardt, M. Mitter, J.M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff and N. Wink; fQCD Collaboration, J. Braun, L. Corell, A.K. Cyrol, W.-J. Fu, M. Leonhardt, M. Mitter, J.M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff and N. Wink
[28] Braun, J.; Fister, L.; Pawlowski, J. M.; Rennecke, F., Phys. Rev., D 94, 3, 034016 (2016)
[29] Rennecke, F., Phys. Rev., D 92, 7, 076012 (2015)
[30] Eichhorn, A.; Held, A.; Pawlowski, J. M., Phys. Rev., D 94, 10, 104027 (2016)
[31] J. Vermaseren, FORM GitHub Repository, 2016. https://github.com/vermaseren/form; J. Vermaseren, FORM GitHub Repository, 2016. https://github.com/vermaseren/form
[32] J. Vermaseren, FORM homepage, 2016. http://www.nikhef.nl/ form/; J. Vermaseren, FORM homepage, 2016. http://www.nikhef.nl/ form/
[33] A.K. Cyrol, M. Mitter, J.M. Pawlowski, N. Strodthoff, FormTracer GitHub Repository, 2016. https://github.com/FormTracer/FormTracer; A.K. Cyrol, M. Mitter, J.M. Pawlowski, N. Strodthoff, FormTracer GitHub Repository, 2016. https://github.com/FormTracer/FormTracer
[34] van Ritbergen, T.; Schellekens, A. N.; Vermaseren, J. A.M., Internat. J. Modern Phys. A, 14, 41-96 (1999) · Zbl 0924.22017
[35] Cvitanovic, P., Phys. Rev., D 14, 1536-1553 (1976)
[36] Larin, S. A., Phys. Lett. B, 303, 113-118 (1993)
[37] Moch, S.; Vermaseren, J. A.M.; Vogt, A., Phys. Lett., B 748, 432-438 (2015) · Zbl 1345.81125
[38] Huber, M. Q.; Braun, J., Comput. Phys. Comm., 183, 1290-1320 (2012)
[39] Hahn, T., Comput. Phys. Comm., 140, 418-431 (2001) · Zbl 0994.81082
[40] Nogueira, P., J. Comput. Phys., 105, 279-289 (1993) · Zbl 0782.68091
[41] F. Feng, R. Mertig, FormLink/FeynCalcFormLink : Embedding FORM in Mathematica and FeynCalc. arXiv:1212.3522; F. Feng, R. Mertig, FormLink/FeynCalcFormLink : Embedding FORM in Mathematica and FeynCalc. arXiv:1212.3522
[42] Mertig, R.; Bohm, M.; Denner, A., Comput. Phys. Comm., 64, 345-359 (1991)
[43] Shtabovenko, V.; Mertig, R.; Orellana, F., Comput. Phys. Comm., 207, 432-444 (2016) · Zbl 1375.68227
[44] V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE and Package-X. arXiv:1611.06793; V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE and Package-X. arXiv:1611.06793 · Zbl 1411.81021
[45] Wiebusch, M., Comput. Phys. Comm., 195, 172-190 (2015)
[46] Jamin, M.; Lautenbacher, M. E., Comput. Phys. Comm., 74, 265-288 (1993)
[47] S.A. Larin, F.V. Tkachov, J.A.M. Vermaseren, The FORM version of MINCER; S.A. Larin, F.V. Tkachov, J.A.M. Vermaseren, The FORM version of MINCER
[48] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, A. Semenov, CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space. arXiv:hep-ph/9908288; A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, A. Semenov, CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space. arXiv:hep-ph/9908288
[49] Tentyukov, M.; Fleischer, J., Comput. Phys. Comm., 132, 124-141 (2000) · Zbl 1073.81506
[50] Hahn, T.; Perez-Victoria, M., Comput. Phys. Comm., 118, 153-165 (1999)
[51] Steinhauser, M., Comput. Phys. Comm., 134, 335-364 (2001) · Zbl 0978.81058
[52] Belanger, G.; Boudjema, F.; Fujimoto, J.; Ishikawa, T.; Kaneko, T.; Kato, K.; Shimizu, Y., Phys. Rep., 430, 117-209 (2006)
[53] Andonov, A.; Arbuzov, A.; Bardin, D.; Bondarenko, S.; Christova, P.; Kalinovskaya, L.; Nanava, G.; von Schlippe, W., Comput. Phys. Comm., 174, 481-517 (2006)
[54] Hirschi, V.; Frederix, R.; Frixione, S.; Garzelli, M. V.; Maltoni, F.; Pittau, R., J. High Energy Phys., 05, 044 (2011) · Zbl 1296.81138
[55] Cullen, G., Eur. Phys. J., C 74, 8, 3001 (2014)
[56] Patel, H. H., Comput. Phys. Comm., 197, 276-290 (2015) · Zbl 1351.81011
[57] H.H. Patel, Package-X 20: A Mathematica package for the analytic calculation of one-loop integrals. arXiv:1612.00009; H.H. Patel, Package-X 20: A Mathematica package for the analytic calculation of one-loop integrals. arXiv:1612.00009 · Zbl 1351.81011
[58] Ueda, T.; Ruijl, B.; Vermaseren, J. A.M., PoS, LL2016, 070 (2016)
[59] Bauer, C. W.; Frink, A.; Kreckel, R., J. Symbolic Comput., 33, 1 (2000)
[60] U. Gran, GAMMA: A Mathematica package for performing gamma matrix algebra and Fierz transformations in arbitrary dimensions. arXiv:hep-th/0105086; U. Gran, GAMMA: A Mathematica package for performing gamma matrix algebra and Fierz transformations in arbitrary dimensions. arXiv:hep-th/0105086
[61] Peeters, K., Comput. Phys. Comm., 176, 550-558 (2007) · Zbl 1196.68333
[62] SymPy Development Team, SymPy homepage, 2016. http://www.sympy.org/; SymPy Development Team, SymPy homepage, 2016. http://www.sympy.org/
[63] Martin-Garcia, J. M.; Portugal, R.; Manssur, L. R.U., Comput. Phys. Comm., 177, 640-648 (2007) · Zbl 1196.15006
[64] J.M. Martín-García, xAct: Efficient tensor computer algebra for Mathematica, 2016. http://www.xact.es/; J.M. Martín-García, xAct: Efficient tensor computer algebra for Mathematica, 2016. http://www.xact.es/
[65] D.A. Bolotin, S.V. Poslavsky, Introduction to Redberry: a computer algebra system designed for tensor manipulation. arXiv:1302.1219; D.A. Bolotin, S.V. Poslavsky, Introduction to Redberry: a computer algebra system designed for tensor manipulation. arXiv:1302.1219
[66] T. Denz, J.M. Pawlowski, M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity. arXiv:1612.07315; T. Denz, J.M. Pawlowski, M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity. arXiv:1612.07315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.