×

FeynMG: a FeynRules extension for scalar-tensor theories of gravity. (English) Zbl 1541.81096

Summary: The ability to represent perturbative expansions of interacting quantum field theories in terms of simple diagrammatic rules has revolutionized calculations in particle physics (and elsewhere). Moreover, these rules are readily automated, a process that has catalyzed the rise of symbolic algebra packages. However, in the case of extended theories of gravity, such as scalar-tensor theories, it is necessary to precondition the Lagrangian to apply this automation or, at the very least, to take advantage of existing software pipelines. We present a Mathematica code FeynMG, which works in conjunction with the well-known package FeynRules, to do just that: FeynMG takes as inputs the FeynRules model file for a non-gravitational theory and a user-supplied gravitational Lagrangian. FeynMG provides functionality that inserts the minimal gravitational couplings of the degrees of freedom specified in the model file, determines the couplings of the additional tensor and scalar degrees of freedom (the metric and the scalar field from the gravitational sector), and preconditions the resulting Lagrangian so that it can be passed to FeynRules, either directly or by outputting an updated FeynRules model file. The Feynman rules can then be determined and output through FeynRules, using existing universal output formats and interfaces to other analysis packages.

MSC:

81T10 Model quantum field theories
81V19 Other fundamental interactions in quantum theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T32 Matrix models and tensor models for quantum field theory
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics

References:

[1] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., FeynRules 2.0 - a complete toolbox for tree-level phenomenology
[2] Fujii, Y.; Maeda, K., The Scalar-Tensor Theory of Gravitation (2003), Cambridge University Press · Zbl 1079.83023
[3] Brans, C.; Dicke, R. H., Mach’s principle and a relativistic theory of gravitation. Phys. Rev., 925-935 (1961) · Zbl 0103.21402
[4] Horndeski, G. W., Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys., 363-384 (1974)
[5] Kobayashi, T., Horndeski theory and beyond: a review. Rep. Prog. Phys. (2019)
[6] Traykova, D.; Bellini, E.; Ferreira, P. G., The phenomenology of beyond Horndeski gravity. J. Cosmol. Astropart. Phys. (2019) · Zbl 1541.83195
[7] Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F., Essential building blocks of dark energy. J. Cosmol. Astropart. Phys. (2013)
[8] Langlois, D.; Noui, K., Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability. J. Cosmol. Astropart. Phys. (2016)
[9] Langlois, D., Dark energy and modified gravity in degenerate higher-order scalar-tensor (DHOST) theories: a review. Int. J. Mod. Phys. D (2019) · Zbl 1423.83004
[10] Wetterich, C., Cosmology and the fate of dilatation symmetry. Nucl. Phys. B, 668-696 (1988)
[11] Buchmuller, W.; Dragon, N., Dilatons in flat and curved spacetime. Nucl. Phys. B, 207-231 (1989)
[12] Shaposhnikov, M.; Zenhausern, D., Scale invariance, unimodular gravity and dark energy. Phys. Lett. B, 187-192 (2009)
[13] Shaposhnikov, M.; Zenhausern, D., Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B, 162-166 (2009)
[14] Blas, D.; Shaposhnikov, M.; Zenhausern, D., Scale-invariant alternatives to general relativity. Phys. Rev. D (2011)
[15] Henz, T.; Pawlowski, J. M.; Rodigast, A.; Wetterich, C., Dilaton quantum gravity. Phys. Lett. B, 298-302 (2013) · Zbl 1331.81216
[16] Karananas, G. K.; Shaposhnikov, M., Scale invariant alternatives to general relativity. II. Dilaton properties. Phys. Rev. D (2016)
[17] Ferreira, P. G.; Hill, C. T.; Ross, G. G., Scale-independent inflation and hierarchy generation. Phys. Lett. B, 174-178 (2016) · Zbl 1370.81209
[18] Garcia-Bellido, J.; Rubio, J.; Shaposhnikov, M.; Zenhausern, D., Higgs-dilaton cosmology: from the early to the late universe. Phys. Rev. D (2011)
[19] Garcia-Bellido, J.; Rubio, J.; Shaposhnikov, M., Higgs-dilaton cosmology: are there extra relativistic species?. Phys. Lett. B, 507-511 (2012)
[20] Bezrukov, F.; Karananas, G. K.; Rubio, J.; Shaposhnikov, M., Higgs-dilaton cosmology: an effective field theory approach. Phys. Rev. D (2013)
[21] Rubio, J.; Shaposhnikov, M., Higgs-dilaton cosmology: universality versus criticality. Phys. Rev. D (2014)
[22] Herranen, M.; Markkanen, T.; Nurmi, S.; Rajantie, A., Spacetime curvature and the Higgs stability during inflation. Phys. Rev. Lett. (2014)
[23] Markkanen, T.; Nurmi, S.; Rajantie, A.; Stopyra, S., The 1-loop effective potential for the Standard Model in curved spacetime. J. High Energy Phys. (2018) · Zbl 1395.83035
[24] Steinwachs, C. F.; Kamenshchik, A. Y., One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: calculation in the Jordan frame. I. The main results. Phys. Rev. D (2011)
[25] Bekenstein, J. D., The Relation between physical and gravitational geometry. Phys. Rev. D, 3641-3647 (1993)
[26] Zumalacárregui, M.; García-Bellido, J., Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian. Phys. Rev. D (2014)
[27] Teixeira, E. M.; Nunes, A.; Nunes, N. J., Disformally coupled quintessence. Phys. Rev. D, 8 (2020)
[28] Silveira, V.; Zee, A., Scalar phantoms. Phys. Lett. B, 136-140 (1985)
[29] McDonald, J., Gauge singlet scalars as cold dark matter. Phys. Rev. D, 3637-3649 (1994)
[30] Burgess, C. P.; Pospelov, M.; ter Veldhuis, T., The minimal model of nonbaryonic dark matter: a singlet scalar. Nucl. Phys. B, 709-728 (2001)
[31] Davoudiasl, H.; Kitano, R.; Li, T.; Murayama, H., The new minimal standard model. Phys. Lett. B, 117-123 (2005)
[32] Schabinger, R. M.; Wells, J. D., A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider. Phys. Rev. D (2005)
[33] Patt, B.; Wilczek, F., Higgs-field portal into hidden sectors
[34] Falkowski, A.; Juknevich, J.; Shelton, J., Dark matter through the neutrino portal
[35] Gonzalez Macías, V.; Wudka, J., Effective theories for dark matter interactions and the neutrino portal paradigm. J. High Energy Phys. (2015) · Zbl 1388.83932
[36] Burrage, C.; Copeland, E. J.; Millington, P.; Spannowsky, M., Fifth forces, Higgs portals and broken scale invariance. J. Cosmol. Astropart. Phys. (2018) · Zbl 1527.83079
[37] Copeland, E. J.; Millington, P.; Muñoz, S. S., Fifth forces and broken scale symmetries in the Jordan frame. J. Cosmol. Astropart. Phys., 02 (2022) · Zbl 1487.83027
[38] Pukhov, A.; Boos, E.; Dubinin, M.; Edneral, V.; Ilyin, V.; Kovalenko, D.; Kryukov, A.; Savrin, V.; Shichanin, S.; Semenov, A., CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space
[39] Belyaev, A.; Christensen, N. D.; Pukhov, A., Comput. Phys. Commun., 1729-1769 (2013) · Zbl 1286.81009
[40] Kublbeck, J.; Bohm, M.; Denner, A., Feyn arts: computer algebraic generation of Feynman graphs and amplitudes. Comput. Phys. Commun., 165-180 (1990)
[41] Shtabovenko, V.; Mertig, R.; Orellana, F., FeynCalc 9.3: new features and improvements. Comput. Phys. Commun. (2020) · Zbl 1525.81004
[42] Hahn, T.; Paßehr, S.; Schappacher, C., FormCalc 9 and extensions. PoS (2016)
[43] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., MadGraph 5: going beyond. J. High Energy Phys. (2011) · Zbl 1298.81362
[44] Bothmann, E., Event generation with Sherpa 2.2. SciPost Phys., 3 (2019)
[45] Kilian, W.; Ohl, T.; Reuter, J., WHIZARD: simulating multi-particle processes at LHC and ILC. Eur. Phys. J. C, 1742 (2011)
[46] Alloul, A.; D’Hondt, J.; De Causmaecker, K.; Fuks, B.; Rausch de Traubenberg, M., Automated mass spectrum generation for new physics. Eur. Phys. J. C, 2, 2325 (2013)
[47] Latosh, B., FeynGrav: FeynCalc extension for gravity amplitudes. Class. Quantum Gravity, 16 (2022) · Zbl 1500.83014
[48] Martín-García, José M., xAct: efficient tensor computer algebra for Mathematica (2002-2013)
[49] Noller, Johannes, xIST/COPPER: extension of xAct to investigate scalar-tensor theories at the level of linear perturbations (2016)
[50] Lagos, M.; Baker, T.; Ferreira, P. G.; Noller, J., A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories. J. Cosmol. Astropart. Phys. (2016)
[51] Prinz, D., Gravity-matter Feynman rules for any valence. Class. Quantum Gravity, 21 (2021) · Zbl 1479.83096
[52] Müller, J.; Biskupek, L., Variations of the gravitational constant from lunar laser ranging data. Class. Quantum Gravity, 4533-4538 (2007) · Zbl 1128.85301
[53] Donoghue, J. F., Introduction to the effective field theory description of gravity
[54] Donoghue, J. F.; Ivanov, M. M.; Shkerin, A., EPFL lectures on general relativity as a quantum field theory
[55] Fierz, M.; Pauli, W., On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. Ser. A, 211-232 (1939) · JFM 65.1532.01
[56] DeWitt, B. S., Dynamical theory of groups and fields. Conf. Proc. C, 585-820 (1964) · Zbl 0148.46102
[57] Barvinsky, A. O.; Vilkovisky, G. A., The generalized Schwinger-DeWitt technique in gauge theories and quantum gravity. Phys. Rep., 1-74 (1985)
[58] Finn, K.; Gattus, V.; Karamitsos, S.; Pilaftsis, A., Geometrising the micro-cosmos on a supermanifold
[59] Ferreira, P. G.; Hill, C. T.; Ross, G. G., No fifth force in a scale invariant universe. Phys. Rev. D (2017)
[60] Freese, A., Noether’s theorems and the energy-momentum tensor in quantum gauge theories. Phys. Rev. D, 12 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.