×

Spinning amplitudes from scalar amplitudes. (English) Zbl 1521.81139

Summary: We provide a systematic method to compute tree-level scattering amplitudes with spinning external states from amplitudes with scalar external states in arbitrary spacetime dimensions. We write down analytic answers for various scattering amplitudes, including the four graviton amplitude due to the massive spin \(J\) exchange. We verify the results by computing angular distributions in \(3 + 1\) dimensions using various identities involving Jacobi polynomials.

MSC:

81T11 Higher spin theories
81U20 \(S\)-matrix theory, etc. in quantum theory
83C45 Quantization of the gravitational field
83C57 Black holes
81U05 \(2\)-body potential quantum scattering theory

References:

[1] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincaré Phys. Theor. A20 (1974) 69. · Zbl 1422.83019
[2] Camanho, XO; Edelstein, JD; Maldacena, J.; Zhiboedov, A., Causality constraints on corrections to the graviton three-point coupling, JHEP, 02, 020 (2016) · Zbl 1388.83093 · doi:10.1007/JHEP02(2016)020
[3] Chowdhury, SD; Gadde, A.; Gopalka, T.; Halder, I.; Janagal, L.; Minwalla, S., Classifying and constraining local four photon and four graviton S-matrices, JHEP, 02, 114 (2020) · Zbl 1435.83048 · doi:10.1007/JHEP02(2020)114
[4] B.R. Holstein and A. Ross, Spin effects in long range gravitational scattering, arXiv:0802.0716 [INSPIRE].
[5] V. Vaidya, Gravitational spin Hamiltonians from the S matrix, Phys. Rev. D91 (2015) 024017 [arXiv:1410.5348] [INSPIRE].
[6] Guevara, A.; Ochirov, A.; Vines, J., Scattering of spinning black holes from exponentiated soft factors, JHEP, 09, 056 (2019) · Zbl 1423.83030 · doi:10.1007/JHEP09(2019)056
[7] A. Guevara, A. Ochirov and J. Vines, Black-hole scattering with general spin directions from minimal-coupling amplitudes, Phys. Rev. D100 (2019) 104024 [arXiv:1906.10071] [INSPIRE].
[8] Arkani-Hamed, N.; Huang, Y-T; O’Connell, D., Kerr black holes as elementary particles, JHEP, 01, 046 (2020) · Zbl 1434.83049 · doi:10.1007/JHEP01(2020)046
[9] Chung, M-Z; Huang, Y-T; Kim, J-W; Lee, S., The simplest massive S-matrix: from minimal coupling to black holes, JHEP, 04, 156 (2019) · Zbl 1415.83014 · doi:10.1007/JHEP04(2019)156
[10] Chung, M-Z; Huang, Y-T; Kim, J-W, Classical potential for general spinning bodies, JHEP, 09, 074 (2020) · Zbl 1454.83010 · doi:10.1007/JHEP09(2020)074
[11] Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary dynamics, scattering amplitudes, and effective field theory, Phys. Rev. D104 (2021) 065014 [arXiv:2005.03071] [INSPIRE].
[12] A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff and J. Vines, Gravitational spin-orbit and aligned spin_1-spin_2couplings through third-subleading post-Newtonian orders, Phys. Rev. D102 (2020) 124024 [arXiv:2010.02018] [INSPIRE].
[13] A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff and J. Vines, Gravitational spin-orbit coupling through third-subleading post-Newtonian order: from first-order self-force to arbitrary mass ratios, Phys. Rev. Lett.125 (2020) 011103 [arXiv:2003.11391] [INSPIRE].
[14] M. Khalil, J. Steinhoff, J. Vines and A. Buonanno, Fourth post-Newtonian effective-one-body Hamiltonians with generic spins, Phys. Rev. D101 (2020) 104034 [arXiv:2003.04469] [INSPIRE].
[15] N. Siemonsen and J. Vines, Test black holes, scattering amplitudes and perturbations of Kerr spacetime, Phys. Rev. D101 (2020) 064066 [arXiv:1909.07361] [INSPIRE].
[16] D. Kosmopoulos and A. Luna, Quadratic-in-spin Hamiltonian at O(G^2) from scattering amplitudes, JHEP07 (2021) 037 [arXiv:2102.10137] [INSPIRE].
[17] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, Scattering amplitudes for all masses and spins, JHEP, 11, 070 (2021) · Zbl 1521.81418 · doi:10.1007/JHEP11(2021)070
[18] Chakraborty, S.; Chowdhury, SD; Gopalka, T.; Kundu, S.; Minwalla, S.; Mishra, A., Classification of all 3 particle S-matrices quadratic in photons or gravitons, JHEP, 04, 110 (2020) · Zbl 1436.83023 · doi:10.1007/JHEP04(2020)110
[19] Chowdhury, SD; Gadde, A., Classification of four-point local gluon S-matrices, JHEP, 01, 104 (2021) · doi:10.1007/JHEP01(2021)104
[20] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning conformal blocks, JHEP, 11, 154 (2011) · Zbl 1306.81148 · doi:10.1007/JHEP11(2011)154
[21] S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge, U.K. (2005). · Zbl 1069.81500
[22] P. Kessel, The very basics of higher-spin theory, PoSModave2016 (2017) 001 [arXiv:1702.03694] [INSPIRE].
[23] Bekaert, X.; Boulanger, N., The unitary representations of the Poincaré group in any spacetime dimension, SciPost Phys. Lect. Notes, 30, 1 (2021)
[24] H. Kawai, D.C. Lewellen and S.-H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B269 (1986) 1 [INSPIRE].
[25] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[26] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[27] L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D9 (1974) 898 [INSPIRE].
[28] R.L. Ingraham, Covariant propagators and vertices for higher spin bosons, Prog. Theor. Phys.51 (1974) 249 [INSPIRE].
[29] Chandrasekaran, V.; Remmen, GN; Shahbazi-Moghaddam, A., Higher-point positivity, JHEP, 11, 015 (2018) · Zbl 1404.81274 · doi:10.1007/JHEP11(2018)015
[30] Costa, MS; Hansen, T.; Penedones, J.; Trevisani, E., Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP, 07, 018 (2016) · Zbl 1388.81798 · doi:10.1007/JHEP07(2016)018
[31] M. Jacob and G.C. Wick, On the general theory of collisions for particles with spin, Annals Phys.7 (1959) 404 [Annals Phys.281 (2000) 774] [INSPIRE]. · Zbl 0178.28304
[32] S.D. Joglekar, S matrix derivation of the Weinberg model, Annals Phys.83 (1974) 427 [INSPIRE].
[33] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, The EFT-hedron, JHEP, 05, 259 (2021) · Zbl 1466.81132 · doi:10.1007/JHEP05(2021)259
[34] A. Hebbar, D. Karateev and J. Penedones, Spinning S-matrix bootstrap in 4d, arXiv:2011.11708 [INSPIRE].
[35] Caron-Huot, S.; Komargodski, Z.; Sever, A.; Zhiboedov, A., Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude, JHEP, 10, 026 (2017) · Zbl 1383.83162 · doi:10.1007/JHEP10(2017)026
[36] P. Nayak, R.R. Poojary and R.M. Soni, A note on S-matrix bootstrap for amplitudes with linear spectrum, arXiv:1707.08135 [INSPIRE].
[37] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [INSPIRE]. · Zbl 0122.22605
[38] M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica29 (1963) 186 [INSPIRE]. · Zbl 0127.20001
[39] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106 (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[40] Chandorkar, D.; Chowdhury, SD; Kundu, S.; Minwalla, S., Bounds on Regge growth of flat space scattering from bounds on chaos, JHEP, 05, 143 (2021) · Zbl 1466.81094 · doi:10.1007/JHEP05(2021)143
[41] Wolfram research Inc., Mathematica, version 12.3, https://www.wolfram.com/mathematica/.
[42] J.M.M. García, xAct: efficient tensor computer algebra for Mathematica, http://www.xact.es/.
[43] R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun.64 (1991) 345 [INSPIRE].
[44] V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput. Phys. Commun.207 (2016) 432 [arXiv:1601.01167] [INSPIRE]. · Zbl 1375.68227
[45] V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: new features and improvements, Comput. Phys. Commun.256 (2020) 107478 [arXiv:2001.04407] [INSPIRE]. · Zbl 1525.81004
[46] Sever, A.; Zhiboedov, A., On fine structure of strings: the universal correction to the Veneziano amplitude, JHEP, 06, 054 (2018) · Zbl 1395.83114 · doi:10.1007/JHEP06(2018)054
[47] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: 25^thanniversary edition, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE]. · Zbl 1245.53003
[48] J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE].
[49] J.-Y. Liu and Z.-M. You, The supersymmetric spinning polynomial, arXiv:2011.11299 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.