×

Combining the virtues of stochastic frontier and data envelopment analysis. (English) Zbl 1456.62054

Summary: A recent spate of research has attempted to develop estimators for stochastic frontier models that embrace semi- and nonparametric insights to enjoy the advantages inherent in the more traditional operations research method of data envelopment analysis. These newer methods explicitly allow statistical noise in the model, the absence of which is a common criticism of the data envelopment estimator. Further, several of these newer methods have focused on ensuring that axioms of production hold. These models and their subsequent estimators, despite having many appealing features, have yet to appear regularly in empirical research. Given the pace at which estimators of this style are being proposed, coupled with the dearth of formal applications, we seek to review the literature and discuss practical implementation issues of these methods. We provide a general overview of the major recent developments in this important arena, draw connections with the data envelopment analysis field, and discuss how useful synergies can be undertaken. We also include simulations comparing the performance of many of the methods presented here.

MSC:

62G05 Nonparametric estimation
62J05 Linear regression; mixed models
62R07 Statistical aspects of big data and data science
Full Text: DOI

References:

[1] Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production functions. J. Econom. 6(1):21-37.Crossref, Google Scholar · Zbl 0366.90026 · doi:10.1016/0304-4076(77)90052-5
[2] Alvarez A, Amsler C, Orea L, Schmidt P (2006) Interpreting and testing the scaling property in models where inefficiency depends on firm characteristics. J. Productivity Anal. 25(2):201-212.Crossref, Google Scholar · doi:10.1007/s11123-006-7639-3
[3] Andor M, Parmeter CF (2017) Pseudolikelihood estimation of the stochastic frontier model. Appl. Econom. 49(55):5651-5661.Crossref, Google Scholar · doi:10.1080/00036846.2017.1324611
[4] Badunenko O, Henderson DJ, Kumbhakar SC (2012) When, where and how to perform efficiency analysis. J. Royal Statist. Soc. Ser. A 175(4):863-892.Crossref, Google Scholar · doi:10.1111/j.1467-985X.2011.01023.x
[5] Banker RD, Maindiratta A (1992) Maximum likelihood estimation of monotone and concave production frontiers. J. Productivity Anal. 3(4):401-415.Crossref, Google Scholar · doi:10.1007/BF00163435
[6] Banker RD, Natarajan R (2008) Evaluating contextual variables affecting productivity using data envelopment analysis. Oper. Res. 56(1):48-58.Link, Google Scholar · Zbl 1167.90527
[7] Banker RD, Thrall RM (1992) Estimation of returns to scale using data envelopment analysis. Eur. J. Oper. Res. 62(1):74-84.Crossref, Google Scholar · Zbl 0760.90001 · doi:10.1016/0377-2217(92)90178-C
[8] Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Sci. 30(9):1078-1092.Link, Google Scholar · Zbl 0552.90055
[9] Bogetoft P, Otto L (2015) Benchmarking with DEA and SFA. R package version 0.26.Google Scholar · Zbl 1213.90001
[10] Casu B, Ferrari A, Zhao T (2013) Regulatory reform and productivity change in indian banking. Rev. Econom. Statist. 95(3):1066-1077.Crossref, Google Scholar · doi:10.1162/REST_a_00298
[11] Chambers RG, Färe R (2008) A “calculus” for data envelopment analysis. J. Productivity Anal. 30(1):169-175.Crossref, Google Scholar · doi:10.1007/s11123-008-0104-8
[12] Chapple W, Lockett A, Siegel D, Wright M (2005) Assessing the relative performance of U.K. university technology transfer offices: Parametric and non-parametric evidence. Res. Policy 34(3):369-384.Crossref, Google Scholar · doi:10.1016/j.respol.2005.01.007
[13] Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2(6):429-444.Crossref, Google Scholar · Zbl 0416.90080 · doi:10.1016/0377-2217(78)90138-8
[14] Chen L-H, Cheng M-Y, Peng L (2009) Conditional variance estimation in heteroscedastic regression models. J. Statist. Planning Inference 139(2):236-245.Crossref, Google Scholar · Zbl 1149.62032 · doi:10.1016/j.jspi.2008.04.020
[15] Coelli T, Henningsen A (2017) Frontier: Stochastic frontier analysis. R package version 1.1-2, https://CRAN.R-Project.org/package=frontier.Google Scholar
[16] Cook W, Harrison J, Imanirad R, Rouse P, Zhu J (2013) Data envelopment analysis with nonhomogeneous DMUs. Oper. Res. 61(3):666-676.Link, Google Scholar · Zbl 1273.91113
[17] Cook WD, Zhu J (2008) CAR-DEA: Context-dependent assurance regions in DEA. Oper. Res. 56(1):69-78.Link, Google Scholar · Zbl 1167.90535
[18] Daraio C, Simar L, Wilson PW (2018) Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production. Econom. J. 21(2):170-191.Crossref, Google Scholar · Zbl 07547390 · doi:10.1111/ectj.12103
[19] Debreu G (1951) The coefficient of resource utilization. Econometrica 19(3):273-292.Crossref, Google Scholar · Zbl 0045.41404 · doi:10.2307/1906814
[20] Delgado MA, Gonzalez-Manteiga W (2001) Significance testing in nonparametric regression based on the bootstrap. Ann. Statist. 29(5):1469-1507.Google Scholar · Zbl 1043.62032
[21] Delgado MS, Parmeter CF (2013) Embarrassingly easy embarrassingly parallel processing in R. J. Appl. Econom. 28(6):1224-1230.Crossref, Google Scholar · doi:10.1002/jae.2362
[22] Du P, Parmeter CF, Racine JS (2013) Nonparametric kernel regression with multiple predictors and multiple shape constraints. Statist. Sinica 23(3):1347-1371.Google Scholar · Zbl 1534.62050
[23] Dyson RG, Allen R, Camanho AS, Podinovski VV, Sarrico CS (2001) Pitfalls and protocols in DEA. Eur. J. Oper. Res. 132(2):245-259.Crossref, Google Scholar · Zbl 0980.90038 · doi:10.1016/S0377-2217(00)00149-1
[24] Fan J, Gijbels I (1996) Local Polynomial Modelling and Its Application (Chapman and Hall, Boca Raton, FL).Google Scholar · Zbl 0873.62037
[25] Fan J, Yao Q (1998) Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85(3):645-660.Crossref, Google Scholar · Zbl 0918.62065 · doi:10.1093/biomet/85.3.645
[26] Fan J, Zhang C, Zhang J (2001) Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29(1):153-193.Crossref, Google Scholar · Zbl 1029.62042 · doi:10.1214/aos/996986505
[27] Fan Y, Li Q, Weersink A (1996) Semiparametric estimation of stochastic production frontier models. J. Bus. Econom. Statist. 14(4):460-468.Google Scholar
[28] Färe R, Grosskopf S (1983) Measuring output efficiency. Eur. J. Oper. Res. 13(1):173-179.Crossref, Google Scholar · Zbl 0513.90008 · doi:10.1016/0377-2217(83)90080-2
[29] Farrell MJ (1957) The measurement of productive efficiency. J. Royal Statist. Soc. Ser. A General 120(3):253-281.Crossref, Google Scholar · doi:10.2307/2343100
[30] Giraleas D, Emrouznejad A, Thanassoulis E (2012) Productivity change using growth accounting and frontier-based approaches—Evidence from a Monte Carlo analysis. Eur. J. Oper. Res. 222(3):673-683.Crossref, Google Scholar · doi:10.1016/j.ejor.2012.05.015
[31] Gong B-H, Sickles RC (1992) Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data. J. Econom. 51(2):259-284.Crossref, Google Scholar · doi:10.1016/0304-4076(92)90038-S
[32] Gu J, Li D, Liu D (2007) Bootstrap non-parametric significance test. J. Nonparametric Statist. 19(6-8):215-230.Crossref, Google Scholar · Zbl 1130.62032 · doi:10.1080/10485250701734497
[33] Guo X, Li G-R, McAleer M, Wong W-K (2018) Specification testing of production in a stochastic frontier model. Sustainability 10(9):3082.Crossref, Google Scholar · doi:10.3390/su10093082
[34] Hafner C, Manner H, Simar L (2016) The “wrong skewness” problem in stochastic frontier model: A new approach. Econom. Rev. 31(4):380-400.Crossref, Google Scholar · Zbl 1490.91118 · doi:10.1080/07474938.2016.1140284
[35] Hall P, Huang H (2001) Nonparametric kernel regression subject to monotonicity constraints. Ann. Statist. 29(3):624-647.Crossref, Google Scholar · Zbl 1012.62030 · doi:10.1214/aos/1009210683
[36] Hall P, Simar L (2002) Estimating a changepoint, boundary or frontier in the presence of observation error. J. Amer. Statist. Assoc. 97(458):523-534.Crossref, Google Scholar · Zbl 1073.62521 · doi:10.1198/016214502760047050
[37] Härdle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann. Statist. 21(4):1926-1947.Crossref, Google Scholar · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[38] Hayfield T, Racine JS (2008) Nonparametric econometrics: The np package. J. Statist. Software 27(5):1-32.Crossref, Google Scholar · doi:10.18637/jss.v027.i05
[39] Henderson DJ, Parmeter CF (2012) Normal reference bandwidths for the general order, multivariate kernel density derivative estimator. Statist. Probab. Lett. 82(8):2198-2205.Crossref, Google Scholar · Zbl 1471.62316 · doi:10.1016/j.spl.2012.07.020
[40] Henderson DJ, Parmeter CF (2015) Applied Nonparametric Econometrics (Cambridge University Press, Cambridge, UK).Crossref, Google Scholar · Zbl 1305.62004 · doi:10.1017/CBO9780511845765
[41] Hjalmarsson L, Kubmhakar SC, Heshmati A (1996) DEA, DFA and SFA: A comparison. J. Productivity Anal. 7(3):303-327.Crossref, Google Scholar · doi:10.1007/BF00157046
[42] Horrace WC, Parmeter CF (2011) Semiparametric deconvolution with unknown error variance. J. Productivity Anal. 35(2):129-141.Crossref, Google Scholar · doi:10.1007/s11123-010-0193-z
[43] Horrace WC, Wright IA (2019) Stationary points for stochastic frontier models. J. Bus. Econom. Statist. ePub ahead of print January 29, https://doi.org/10.1080/07350015.2018.1526088.Crossref, Google Scholar · doi:10.1080/07350015.2018.1526088
[44] Hsiao C, Li Q, Racine JS (2007) A consistent model specification test with mixed categorical and continuous data. J. Econom. 140(2):802-826.Crossref, Google Scholar · Zbl 1247.62126 · doi:10.1016/j.jeconom.2006.07.015
[45] Kim W, Linton OB, Hengartner NW (1999) A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals. J. Comput. Graph. Statist. 8(2):278-297.Google Scholar
[46] Kneip A, Simar L, Van Keilegom I (2015) Frontier estimation in the presence of measurement error with unknown variance. J. Econom. 184(2):379-393.Crossref, Google Scholar · Zbl 1331.62478 · doi:10.1016/j.jeconom.2014.09.012
[47] Krüger JJ (2012) A Monte Carlo study of old and new frontier methods for efficiency measurement. Eur. J. Oper. Res. 222(1):137-148.Crossref, Google Scholar · Zbl 1253.90010 · doi:10.1016/j.ejor.2012.04.026
[48] Kumbhakar SC, Tsionas EG (2008) Scale and efficiency measurement using a semiparametric stochastic frontier model: Evidence from the U.S. commercial banks. Empirical Econom. 34(3):585-602.Crossref, Google Scholar · doi:10.1007/s00181-007-0137-2
[49] Kumbhakar SC, Park BU, Simar L, Tsionas EG (2007) Nonparametric stochastic frontiers: A local maximum likelihood approach. J. Econom. 137(1):1-27.Crossref, Google Scholar · Zbl 1360.62131 · doi:10.1016/j.jeconom.2006.03.006
[50] Kuosmanen T, Kortelainen M (2012) Stochastic non-smooth envelopment of data: Semi-parametric frontier estimation subject to shape constraints. J. Productivity Anal. 38(1):11-28.Crossref, Google Scholar · doi:10.1007/s11123-010-0201-3
[51] Kuosmanen T, Johnson A, Saastamoinen A (2015) Stochastic nonparametric approach to efficiency analysis: A unified framework. Zhu J, ed. Data Envelopment Analysis, International Series in Operations Research & Management Science (Springer Science, New York), 191-244.Google Scholar
[52] Lavergne P, Vuong Q (1996) Nonparametric significance testing. Econom. Theory 16(4):576-601.Crossref, Google Scholar · Zbl 0968.62047 · doi:10.1017/S0266466600164059
[53] Li Q (1996) Estimating a stochastic production frontier when the adjusted error is symmetric. Econom. Lett. 52(3):221-228.Crossref, Google Scholar · Zbl 0900.90079 · doi:10.1016/S0165-1765(96)00857-9
[54] Li Q, Racine J (2007) Nonparametric Econometrics: Theory and Practice (Princeton University Press, Princeton, NJ).Google Scholar · Zbl 1183.62200
[55] Li Q, Wang S (1998) A simple consistent bootstrap test for a parametric regression function. J. Econom. 87(2):145-165.Crossref, Google Scholar · Zbl 0943.62031 · doi:10.1016/S0304-4076(98)00011-6
[56] Li Z, Liu G, Li Q (2017) Nonparametric knn estimation with monotone constraints. Econom. Rev. 36(6-9):988-1006.Crossref, Google Scholar · Zbl 1524.62185 · doi:10.1080/07474938.2017.1307904
[57] Mammen E (1992) When Does Bootstrap Work? Asymptotic Results and Simulations, Lecture Notes in Statistics, 77th ed. (Springer, New York).Crossref, Google Scholar · Zbl 0760.62038 · doi:10.1007/978-1-4612-2950-6
[58] Martins-Filho C (2014) Review of estimation and inference in nonparametric frontier models: Recent developments and perspectives. Foundations and trends in econometrics, volume 5, numbers 3-4 by Leopold Simar and Paul W. Wilson. J. Econom. Literature 52(1):218-220.Google Scholar
[59] Martins-Filho CB, Yao F (2015) Semiparametric stochastic frontier estimation via profile likelihood. Econom. Rev. 34(4):413-451.Crossref, Google Scholar · Zbl 1491.62246 · doi:10.1080/07474938.2013.806729
[60] Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Internat. Econom. Rev. 18(2):435-444.Crossref, Google Scholar · Zbl 0366.90025 · doi:10.2307/2525757
[61] Noh H (2014) Frontier estimation using kernel smoothing estimators with data transformation. J. Korean Statist. Soc. 43(4):503-512.Crossref, Google Scholar · Zbl 1304.62145 · doi:10.1016/j.jkss.2014.07.005
[62] Olesen OB, Petersen NC (1995) Chance constrained efficiency evaluation. Management Sci. 41(3):442-457.Link, Google Scholar · Zbl 0833.90004
[63] Olesen OB, Petersen NC (2016) Stochastic data envelopment analysis—A review. Eur. J. Oper. Res. 251(1):2-21.Crossref, Google Scholar · Zbl 1346.90595 · doi:10.1016/j.ejor.2015.07.058
[64] Olson JA, Schmidt P, Waldman DA (1980) A Monte Carlo study of estimators of stochastic frontier production functions. J. Econom. 13(1):67-82.Crossref, Google Scholar · Zbl 0436.62099 · doi:10.1016/0304-4076(80)90043-3
[65] Park BU, Simar L, Zelenyuk V (2015) Categorical data in local maximum likelihood: Theory and applications to productivity analysis. J. Productivity Anal. 43(1):199-214.Crossref, Google Scholar · doi:10.1007/s11123-014-0394-y
[66] Parmeter CF, Kumbhakar SC (2014) Efficiency analysis: A primer on recent advances. Foundations Trends Econom. 7(3-4):191-385.Crossref, Google Scholar · Zbl 1307.62255 · doi:10.1561/0800000023
[67] Parmeter CF, Racine JS (2012) Smooth constrained frontier analysis. Chen X, Swanson N, eds. Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis: Essays in Honor of Halbert L. White Jr. (Springer, New York), 463-489.Google Scholar
[68] Parmeter CF, Wang H-J, Kumbhakar SC (2017) Nonparametric estimation of the determinants of inefficiency. J. Productivity Anal. 47(3):205-221.Crossref, Google Scholar · doi:10.1007/s11123-016-0479-x
[69] Racine JS (1997) Consistent significance testing for nonparametric regression. J. Bus. Econom. Statist. 15(3):369-378.Google Scholar
[70] Racine JS, Li Q (2004) Nonparametric estimation of regression functions with both categorical and continuous data. J. Econom. 119(1):99-130.Crossref, Google Scholar · Zbl 1337.62062 · doi:10.1016/S0304-4076(03)00157-X
[71] Ritter C, Simar L (1997) Pitfalls of normal-gamma stochastic frontier models. J. Productivity Anal. 8(2):167-182.Crossref, Google Scholar · doi:10.1023/A:1007751524050
[72] Ruppert D, Sheather S, Wand MP (1995) An effective bandwidth selector for local least squares regression. J. Amer. Statist. Assoc. 90(432):1257-1270.Crossref, Google Scholar · Zbl 0868.62034 · doi:10.1080/01621459.1995.10476630
[73] Schmidt P (2011) One-step and two-step estimation in SFA models. J. Productivity Anal. 36(2):201-203.Crossref, Google Scholar · doi:10.1007/s11123-011-0228-0
[74] Seijo E, Sen B (2011) Nonparametric least squares estimation of a multivariate convex regression function. Ann. Statist. 39(3):1633-1657.Crossref, Google Scholar · Zbl 1220.62044 · doi:10.1214/10-AOS852
[75] Simar L (1992) Estimating efficiencies from frontier models with panel data: A comparison of parametric, non-parametric and semi-parametric methods with bootstrapping. J. Productivity Anal. 3(2):171-203.Crossref, Google Scholar · doi:10.1007/BF00158775
[76] Simar L (2007) How to improve the performances of DEA/FDH estimators in the presence of noise. J. Productivity Anal. 28(2):183-201.Crossref, Google Scholar · doi:10.1007/s11123-007-0057-3
[77] Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 136(1):31-64.Crossref, Google Scholar · Zbl 1418.62535 · doi:10.1016/j.jeconom.2005.07.009
[78] Simar L, Wilson PW (2009) Inferences from cross-sectional, stochastic frontier models. Econom. Rev. 29(1):62-98.Crossref, Google Scholar · Zbl 1180.62194 · doi:10.1080/07474930903324523
[79] Simar L, Wilson PW (2011) Two-stage DEA: Caveat emptor. J. Productivity Anal. 36(2):205-218.Crossref, Google Scholar · doi:10.1007/s11123-011-0230-6
[80] Simar L, Wilson PW (2013) Estimation and inference in nonparametric frontier models: Recent developments and perspectives. Foundations Trends Econom. 5(2):183-337.Google Scholar · Zbl 1281.62243
[81] Simar L, Wilson PW (2015) Statistical approaches for nonparametric frontier models: A guided tour. Internat. Statist. Rev. 83(1):77-110.Crossref, Google Scholar · Zbl 07762797 · doi:10.1111/insr.12056
[82] Simar L, Zelenyuk V (2011) Stochastic FDH/DEA estimators for frontier analysis. J. Productivity Anal. 36(1):1-20.Crossref, Google Scholar · doi:10.1007/s11123-010-0170-6
[83] Simar L, Van Keilegom I, Zelenyuk V (2017a) Nonparametric least squares methods for stochastic frontier models. J. Productivity Anal. 47(3):189-204.Crossref, Google Scholar · doi:10.1007/s11123-016-0474-2
[84] Simar L, Van Keilegom I, Zelenyuk V, Parmeter CF (2017b) Inference for nonparametric stochastic frontier models. University of Miami Working Paper 19-01, University of Miami, Miami.Google Scholar
[85] Stevenson R (1980) Likelihood functions for generalized stochastic frontier estimation. J. Econom. 13(1):58-66.Crossref, Google Scholar · Zbl 0436.62097 · doi:10.1016/0304-4076(80)90042-1
[86] Tibshirani R, Hastie T (1987) Local likelihood estimation. J. Amer. Statist. Assoc. 82(398):559-568.Crossref, Google Scholar · Zbl 0626.62041 · doi:10.1080/01621459.1987.10478466
[87] Waldman DM (1982) A stationary point for the stochastic frontier likelihood. J. Econom. 18(1):275-279.Crossref, Google Scholar · Zbl 0489.62100 · doi:10.1016/0304-4076(82)90041-0
[88] Wang H-J, Schmidt P (2002) One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. J. Productivity Anal. 18(2):129-144.Crossref, Google Scholar · doi:10.1023/A:1016565719882
[89] White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817-838.Crossref, Google Scholar · Zbl 0459.62051 · doi:10.2307/1912934
[90] Xu KL, Phillips PCB (2011) Tilted nonparametric estimation of volatility functions with empirical applications. J. Bus. Econom. Statist. 29(4):518-528.Crossref, Google Scholar · doi:10.1198/jbes.2011.09012
[91] Yu C (1998) The effects of exogenous variables in efficiency measurement—A Monte Carlo study. Eur. J. Oper. Res. 105(3):569-580.Crossref, Google Scholar · Zbl 0955.90083 · doi:10.1016/S0377-2217(97)00076-3
[92] Zheng X (2009) Testing heteroskedasticity in nonlinear and nonparametric regression. Can. J. Statist. 37(2):282-300.Crossref, Google Scholar · Zbl 1176.62046 · doi:10.1002/cjs.10020
[93] Zhu J (2004) Imprecise DEA via standard linear DEA models with a revisit to a Korean mobile telecommunication company. Oper. Res. 52(2):323-329.Link, · Zbl 1165.90563
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.