×

Using two types of computer algebra systems to solve Maxwell optics problems. (English. Russian original) Zbl 1344.78021

Program. Comput. Softw. 42, No. 2, 77-83 (2016); translation from Programmirovanie 42, No. 2 (2016).
Summary: To synthesize Maxwell optics systems, the mathematical apparatus of tensor and vector analysis is generally employed. This mathematical apparatus implies executing a great number of simple stereotyped operations, which are adequately supported by computer algebra systems. In this paper, we distinguish between two stages of working with a mathematical model: model development and model usage. Each of these stages implies its own computer algebra system. As a model problem, we consider the problem of geometrization of Maxwell’s equations. Two computer algebra systems – Cadabra and FORM – are selected for use at different stages of investigation.

MSC:

78M25 Numerical methods in optics (MSC2010)
68W30 Symbolic computation and algebraic computation
78A50 Antennas, waveguides in optics and electromagnetic theory
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory

References:

[1] Hadamard, J.S., Psychology of Invention in the Mathematical Field, Dover, 1954, 2nd ed. · Zbl 0056.00101
[2] Brooks, F. P.J., No silver bullet-essence and accidents of software engineering, 1069-1076 (1986)
[3] Penrose, R. and Rindler, W., Spinors and Space-Time: Two-Spinor Calculus and Relativistic Fields, Cambridge: Cambridge Univ. Press, 1987, vol. 1. · Zbl 0663.53013
[4] Korol’kova, A.V., Kulyabov, D.S., and Sevast’yanov, L.A., Tensor computations in computer algebra systems, Program. Comput. Software, 2013, vol. 39, no. 3. pp. 135-142. · Zbl 1301.68280 · doi:10.1134/S0361768813030031
[5] Sevastianov, L.A., Kulyabov, D.S., and Kokotchikova, M.G., An application of computer algebra system Cadabra to scientific problems of physics, Phys. Part. Nucl. Lett., 2009, vol. 6, no. 7. pp. 530-534. · doi:10.1134/S1547477109070073
[6] Peeters, K., Cadabra: A field-theory motivated symbolic computer algebra system, Comput. Phys. Commun., 2007, vol. 176, no. 8. pp. 550-558. · Zbl 1196.68333 · doi:10.1016/j.cpc.2007.01.003
[7] Peeters, K., Introducing Cadabra: A symbolic computer algebra system for field theory problems. http://arxivorg/abs/hep-th/0701238. · Zbl 1196.68333
[8] Peeters, K., Symbolic field theory with Cadabra, Computeralgebra- Rundbrief, 2007, no. 41, pp. 16-19. · Zbl 1196.68333
[9] Brewin, L., A brief introduction to Cadabra: A tool for tensor computations in general relativity, Comput. Phys. Commun., 2010, vol. 181, no. 3. pp. 489-498. · Zbl 1206.83007 · doi:10.1016/j.cpc.2009.10.020
[10] Tung, M.M., FORM matters: Fast symbolic computation under UNIX, Comput. Math. Appl., 2005, vol. 49, pp. 1127-1137. · doi:10.1016/j.camwa.2004.07.023
[11] Vermaseren, J.A.M., Kuipers, J., Tentyukov, M., et al., FORM version 4.1 Reference Material, 2013.
[12] Heck, A.J.P. and Vermaseren, J.A.M., FORM for Pedestrians, Amsterdam, 2000.
[13] Fliegner, D., Retey, A., and Vermaseren, J.A.M., Parallelizing the symbolic manipulation program FORM. http://arxivorg/abs/hep-ph/9906426. · Zbl 1196.68333
[14] Tentyukov, M. and Vermaseren, J.A.M., Extension of the functionality of the symbolic program FORM by external software, Comput. Phys. Commun., 2007, vol. 176, no. 6. pp. 385-405. · doi:10.1016/j.cpc.2006.11.007
[15] Boos, E.E. and Dubinin, M.N., Problems of automatic computations for physics on colliders, Usp. Fiz. Nauk, 2010, vol. 180, no. 10. pp. 1081-1094 · doi:10.3367/UFNr.0180.201010d.1081
[16] Bunichev, V., Kryukov, A., and Vologdin, A., Using FORM for symbolic evaluation of Feynman diagrams in CompHEP package, Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 502, pp. 564-566. · doi:10.1016/S0168-9002(03)00503-5
[17] Hahn, T., Generating and calculating one-loop Feynman diagrams with FeynArts, FormCalc, and Loop- Tools. http://arxivorg/abs/hep-ph/9905354.
[18] Hahn, T., Automatic loop calculations with FeynArts, FormCalc, and LoopTools. http://arxivorg/abs/hepph/0005029.
[19] Hahn, T. and Lang, P., FeynEdit: A tool for drawing Feynman diagrams. http://arxivorg/abs/0711.1345.
[20] Wheeler, J.A., Neutrinos, Gravitation, and Geometry, Bologna, 1960.
[21] Tamm, I.E., Electrodynamics of an anisotropic medium in the special relativity theory, Zh. Russ. Fiz.- Khim. O-va., Chast Fiz., 1924, vol. 56, nos. 2-3, pp. 248-262.
[22] Tamm, I.E., Crystal optics of the relativity theory in connection with the geometry of a biquadratic form, Zh. Russ. Fiz.-Khim. O-va., Chast Fiz., 1925, vol. 57, nos. 3-4, pp. 209-240.
[23] Tamm, I.E. and Mandelstam, L.I., Elektrodynamik der anisotropen Medien in der speziellen Relativitatstheorie, Mathematische Annalen, 1925, vol. 95, no. 1. pp. 154-160. · JFM 51.0716.04
[24] Plebanski, J., Electromagnetic waves in gravitational fields, Phys. Rev., 1960, vol. 118, no. 5. pp. 1396-1408. · Zbl 0092.45102 · doi:10.1103/PhysRev.118.1396
[25] Felice, F., On the gravitational field acting as an optical medium, Gen. Relativ. Gravitation, 1971, vol. 2, no. 4. pp. 347-357. · doi:10.1007/BF00758153
[26] Leonhardt, U., Philbin, T.G., and Haugh, N., General Relativity in Electrical Engineering, 2008, pp. 1-19.
[27] Leonhardt, U. and Philbin, T.G., Transformation optics and the geometry of light, Prog. Opt., 2009, vol. 53, pp. 69-152. · doi:10.1016/S0079-6638(08)00202-3
[28] Kulyabov, D.S., Korolkova, A.V., and Korolkov, V.I., Maxwell’s equations in arbitrary coordinate system, Bulletin of Peoples’ Friendship University of Russia, Series “Mathematics. Information Sciences. Physics,” 2012, no. 1, pp. 96-106.
[29] Kulyabov, D. S., Geometrization of electromagnetic waves, 120 (2013)
[30] Kulyabov, D.S. and Nemchaninova, N.A., Maxwell’s equations in curvilinear coordinates, Bulletin of Peoples’ Friendship University of Russia, Series “Mathematics. Information Sciences. Physics,” 2011, no. 2, pp. 172-179.
[31] Minkowski, H., Die grundlagen fur die electromagnetischen vorgange in bewegten korpern, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 1908, no. 68, pp. 53-111. · JFM 39.0909.02
[32] Stratton, J.A., Electromagnetic Theory, Wiley, 2007. · JFM 67.1119.01
[33] Fulton W., Young Tableaux: With Applications to Representation Theory and Geometry, Cambridge: Cambridge Univ. Press, 1997. · Zbl 0878.14034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.