×

Symmetry factors of Feynman diagrams for scalar fields. (English) Zbl 1254.81067

Theor. Math. Phys. 165, No. 2, 1500-1511 (2010) and Teor. Mat. Fiz. 165, No. 2, 308-322 (2010).
Summary: We calculate the symmetry factors of diagrams for real and complex scalar fields in general form using an analysis of the Wick expansion for Green’s functions. We separate two classes of symmetry factors: factors corresponding to connected diagrams and factors corresponding to vacuum diagrams. The symmetry factors of vacuum diagrams play an important role in constructing the effective action and phase transitions in cosmology. In the complex scalar field theory, diagrams with different topologies can contribute the same, and the inverse symmetry factor for the total contribution is therefore the sum of the inverse symmetry factors.

MSC:

81T18 Feynman diagrams
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
35J08 Green’s functions for elliptic equations

Software:

FormCalc; LoopTools

References:

[1] T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary Particle Physics, Clarendon, Oxford (1984).
[2] J. Külbeck, M. Böhm, and A. Denner, Comput. Phys. Coram., 60, 165–180 (1990); T. Hahn, ”Generating and calculating one-loop Feynman diagrams with FeynArts, FormCalc, and LoopTools,” arXiv:hep-ph/9905354v1 (1999). · doi:10.1016/0010-4655(90)90001-H
[3] P. Nogueira, J. Comput. Phys., 105, 279–289 (1993). · Zbl 0782.68091 · doi:10.1006/jcph.1993.1074
[4] B. Kastening, Phys. Rev. D, 57, 3567–3578 (1998); arXiv:hep-ph/9710346v4 (1997); Phys. Rev. E, 61, 3501-3528 (2000); arXiv:hep-th/9908172v2 (1999); H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Phys. Rev. E, 62, 1537-1559 (2000); arXiv:hep-th/9907168v1 (1999). · doi:10.1103/PhysRevD.57.3567
[5] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, Reading, Mass. (1995).
[6] C D. Palmer and M. E. Carrington, Can. J. Phys., 80, 847–854 (2002); arXiv:hep-th/0108088v1 (2001). · doi:10.1139/p02-006
[7] D. T. Huong and H. N. Long, Phys. Atomic Nuclei, 73, 791–804 (2010); arXiv:0807.2346v2 [hep-ph] (2008). · doi:10.1134/S1063778810050078
[8] L. H. Ryder, Quantum Field Theory (2nd ed.), Cambridge Univ. Press, Cambridge (1998). · Zbl 0941.81051
[9] A. N. Vasil’ev, Functional Methods in Quantum Field Theory and Statistics [in Russian], Leningrad Univ. Press, Leningrad (1976).
[10] M. Kaku, Quantum Field Theory: A Modern Introduction, Clarendon, New York (1993).
[11] W. Greiner and J. Reinhardt, Field Quantization, Springer, Berlin (1996).
[12] A. D. Linde, Phys. Lett. B, 259, 38–47 (1991). · doi:10.1016/0370-2693(91)90130-I
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.