×

Automatic, high-order, and adaptive algorithms for Brillouin zone integration. (English) Zbl 07904997

Summary: We present efficient methods for Brillouin zone integration with a non-zero but possibly very small broadening factor \(\eta \), focusing on cases in which downfolded Hamiltonians can be evaluated efficiently using Wannier interpolation. We describe robust, high-order accurate algorithms automating convergence to a user-specified error tolerance \(\varepsilon\), emphasizing an efficient computational scaling with respect to \(\eta\). After analyzing the standard equispaced integration method, applicable in the case of large broadening, we describe a simple iterated adaptive integration algorithm effective in the small \(\eta\) regime. Its computational cost scales as \(\mathcal{O}(\log^3(\eta^{-1}))\) as \(\eta \to 0^+\) in three dimensions, as opposed to \(\mathcal{O}(\eta^{-3})\) for equispaced integration. We argue that, by contrast, tree-based adaptive integration methods scale only as \(\mathcal{O}(\log(\eta^{-1})/\eta^2)\) for typical Brillouin zone integrals. In addition to its favorable scaling, the iterated adaptive algorithm is straightforward to implement, particularly for integration on the irreducible Brillouin zone, for which it avoids the tetrahedral meshes required for tree-based schemes. We illustrate the algorithms by calculating the spectral function of \(\mathrm{SrVO}_3\) with broadening on the meV scale.

MSC:

65D15 Algorithms for approximation of functions
41A99 Approximations and expansions

References:

[1] P. Kratzer and J. Neugebauer, The basics of electronic structure theory for periodic systems, Front. Chem. 7 (2019), doi:10.3389/fchem.2019.00106. · doi:10.3389/fchem.2019.00106
[2] W. Kohn, Nobel lecture: Electronic structure of matter-wave functions and density function-als, Rev. Mod. Phys. 71, 1253 (1999), doi:10.1103/RevModPhys.71.1253. · doi:10.1103/RevModPhys.71.1253
[3] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996), doi:10.1103/RevModPhys.68.13. · doi:10.1103/RevModPhys.68.13
[4] C. Berthod, J. Mravlje, X. Deng, R. Žitko, D. van der Marel and A. Georges, Non-Drude universal scaling laws for the optical response of local Fermi liquids, Phys. Rev. B 87, 115109 (2013), doi:10.1103/PhysRevB.87.115109. · doi:10.1103/PhysRevB.87.115109
[5] N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for com-posite energy bands, Phys. Rev. B 56, 12847 (1997), doi:10.1103/PhysRevB.56.12847. · doi:10.1103/PhysRevB.56.12847
[6] I. Souza, N. Marzari and D. Vanderbilt, Maximally localized Wannier functions for entan-gled energy bands, Phys. Rev. B 65, 035109 (2001), doi:10.1103/PhysRevB.65.035109. · doi:10.1103/PhysRevB.65.035109
[7] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178, 685 (2008), doi:10.1016/j.cpc.2007.11.016. · Zbl 1196.81033 · doi:10.1016/j.cpc.2007.11.016
[8] J. R. Yates, X. Wang, D. Vanderbilt and I. Souza, Spectral and Fermi sur-face properties from Wannier interpolation, Phys. Rev. B 75, 195121 (2007), doi:10.1103/PhysRevB.75.195121. · doi:10.1103/PhysRevB.75.195121
[9] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976), doi:10.1103/PhysRevB.13.5188. · doi:10.1103/PhysRevB.13.5188
[10] O. Jepson and O. K. Anderson, The electronic structure of h.c.p. Ytterbium, Solid State Commun. 9, 1763 (1971), doi:10.1016/0038-1098(71)90313-9. · doi:10.1016/0038-1098(71)90313-9
[11] G. Lehmann and M. Taut, On the numerical calculation of the density of states and related properties, Phys. Stat. Sol. B 54, 469 (1972), doi:10.1002/pssb.2220540211. · doi:10.1002/pssb.2220540211
[12] P. E. Blöchl, O. Jepsen and O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49, 16223 (1994), doi:10.1103/PhysRevB.49.16223. · doi:10.1103/PhysRevB.49.16223
[13] M. Kawamura, Y. Gohda and S. Tsuneyuki, Improved tetrahedron method for the Brillouin-zone integration applicable to response functions, Phys. Rev. B 89, 094515 (2014), doi:10.1103/PhysRevB.89.094515. · doi:10.1103/PhysRevB.89.094515
[14] M. Ghim and C.-H. Park, Converging tetrahedron method calculations for the nondissipative parts of spectral functions, Phys. Rev. B 106, 075126 (2022), doi:10.1103/PhysRevB.106.075126. · doi:10.1103/PhysRevB.106.075126
[15] K. Haule, C.-H. Yee and K. Kim, Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , Phys. Rev. B 81, 195107 (2010), doi:10.1103/PhysRevB.81.195107. · doi:10.1103/PhysRevB.81.195107
[16] K. -M. Ho, C. L. Fu, B. N. Harmon, W. Weber and D. R. Hamann, Vibrational frequencies and structural properties of transition metals via total-energy calculations, Phys. Rev. Lett. 49, 673 (1982), doi:10.1103/PhysRevLett.49.673. · doi:10.1103/PhysRevLett.49.673
[17] M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40, 3616 (1989), doi:10.1103/PhysRevB.40.3616. · doi:10.1103/PhysRevB.40.3616
[18] T. Björkman and O. Grånäs, Adaptive smearing for Brillouin zone integration, Int. J. Quan-tum Chem. 111, 1025 (2011), doi:10.1002/qua.22476. · doi:10.1002/qua.22476
[19] Y. Wang, P. Wisesa, A. Balasubramanian, S. Dwaraknath and T. Mueller, Rapid generation of optimal generalized Monkhorst-Pack grids, Comput. Mater. Sci. 187, 110100 (2021), doi:10.1016/j.commatsci.2020.110100. · doi:10.1016/j.commatsci.2020.110100
[20] S. Chen, P. T. Salzbrenner and B. Monserrat, Nonuniform grids for Bril-louin zone integration and interpolation, Phys. Rev. B 106, 155102 (2022), doi:10.1103/PhysRevB.106.155102. · doi:10.1103/PhysRevB.106.155102
[21] I. Duchemin, L. Genovese, E. Letournel, A. Levitt and S. Ruget, Efficient extraction of resonant states in systems with defects, J. Comput. Phys. 477, 111928 (2023), doi:10.1016/j.jcp.2023.111928. · Zbl 07652819 · doi:10.1016/j.jcp.2023.111928
[22] J. Henk, Integration over two-dimensional Brillouin zones by adaptive mesh refinement, Phys. Rev. B 64, 035412 (2001), doi:10.1103/PhysRevB.64.035412. · doi:10.1103/PhysRevB.64.035412
[23] E. Assmann, P. Wissgott, J. Kuneš, A. Toschi, P. Blaha and K. Held, woptic: Optical conduc-tivity with Wannier functions and adaptive k-mesh refinement, Comput. Phys. Commun. 202, 1 (2016), doi:10.1016/j.cpc.2015.12.010. · Zbl 1348.82011 · doi:10.1016/j.cpc.2015.12.010
[24] E. Bruno and B. Ginatempo, Algorithms for Korringa-Kohn-Rostoker electronic structure calculations in any Bravais lattice, Phys. Rev. B 55, 12946 (1997), doi:10.1103/PhysRevB.55.12946. · doi:10.1103/PhysRevB.55.12946
[25] E. Kaxiras, Atomic and electronic structure ofsolids, Cambridge University Press, Cam-bridge, UK, ISBN 9780521810104 (2003), doi:10.1017/CBO9780511755545. · doi:10.1017/CBO9780511755545
[26] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM Rev. 56, 385 (2014), doi:10.1137/130932132. · Zbl 1307.65031 · doi:10.1137/130932132
[27] P. J. Davis, On the numerical integration of periodic analytic functions, in R. E. Langer, On numerical approximations, University of Wisconsin Press, Madison, USA (1959).
[28] L. N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev. 50, 67 (2008), doi:10.1137/060659831. · Zbl 1141.65018 · doi:10.1137/060659831
[29] P. Rabinowitz, Rough and ready error estimates in Gaussian integration of analytic func-tions, Commun. ACM 12, 268 (1969), doi:10.1145/362946.362977. · Zbl 0174.47203 · doi:10.1145/362946.362977
[30] N. Hale and L. N. Trefethen, New quadrature formulas from conformal maps, SIAM J. Numer. Anal. 46, 930 (2008), doi:10.1137/07068607X. · Zbl 1173.65020 · doi:10.1137/07068607X
[31] D. Kahaner, C. Moler, S. Nash, G. Forsythe, S. Nash and M. Malcolm, Numerical methods and software, Prentice Hall, Hoboken, USA, ISBN 9780136272588 (1988).
[32] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical recipes: The art of scientific computing, Cambridge University Press, Cambridge, UK, ISBN 9780521880688 (2007). · Zbl 1132.65001
[33] R. Piessens, E. de Doncker-Kapenga, C. Überhuber and D. Kahaner, QUADPACK: A sub-routine package for automatic integration, Springer Berlin, Heidelberg, Germany, ISBN 9783642617867 (2012), doi:10.1007/978-3-642-61786-7. · Zbl 0508.65005 · doi:10.1007/978-3-642-61786-7
[34] L. F. Shampine, Vectorized adaptive quadrature in MATLAB, J. Comput. Appl. Math. 211, 131 (2008), doi:10.1016/j.cam.2006.11.021. · Zbl 1134.65021 · doi:10.1016/j.cam.2006.11.021
[35] A. C. Genz and A. A. Malik, Remarks on algorithm 006: An adaptive algorithm for numer-ical integration over an N-dimensional rectangular region, J. Comput. Appl. Math. 6, 295 (1980), doi:10.1016/0771-050X(80)90039-X. · Zbl 0443.65009 · doi:10.1016/0771-050X(80)90039-X
[36] J. Berntsen, T. O. Espelid and A. Genz, An adaptive algorithm for the approxi-mate calculation of multiple integrals, ACM Trans. Math. Softw. 17, 437 (1991), doi:10.1145/210232.210233. · Zbl 0900.65055 · doi:10.1145/210232.210233
[37] S. G. Johnson, Cubature v1.0.4, GitHub (2020), https://github.com/stevengj/cubature.
[38] S. G. Johnson, HCubature v1.5.0, GitHub (2020), https://github.com/JuliaMath/ HCubature.jl.
[39] J. J. Jorgensen, J. E. Christensen, T. J. Jarvis and G. L. W. Hart, A general algorithm for calculating irreducible Brillouin zones, Commun. Comput. Phys. 31, 495 (2022), doi:10.4208/cicp.OA-2021-0094. · Zbl 1538.82089 · doi:10.4208/cicp.OA-2021-0094
[40] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46, 501 (2004), doi:10.1137/S0036144502417715. · Zbl 1061.65006 · doi:10.1137/S0036144502417715
[41] L. N. Trefethen, Approximation theory and approximation practice, extended edition, So-ciety for Industrial and Applied Mathematics, Philadelphia, USA, ISBN 9781611975932 (2019), doi:10.1137/1.9781611975949. · doi:10.1137/1.9781611975949
[42] P. Dougier, J. C.C. Fan and J. B. Goodenough, Etude des proprietes magnetiques, electriques et optiques des phases de structure perovskite SrVO2.90 et SrVO3, J. Solid State Chem. 14, 247 (1975), doi:10.1016/0022-4596(75)90029-8. · doi:10.1016/0022-4596(75)90029-8
[43] P. Giannozzi et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009), doi:10.1088/0953-8984/21/39/395502. · doi:10.1088/0953-8984/21/39/395502
[44] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996), doi:10.1103/PhysRevLett.77.3865. · doi:10.1103/PhysRevLett.77.3865
[45] K. F. Garrity, J. W. Bennett, K. M. Rabe and D. Vanderbilt, Pseudopoten-tials for high-throughput DFT calculations, Comput. Mater. Sci. 81, 446 (2014), doi:10.1016/j.commatsci.2013.08.053. · doi:10.1016/j.commatsci.2013.08.053
[46] J. Markel, FFT pruning, IEEE Trans. Audio Electroacoust. 19, 305 (1971), doi:10.1109/TAU.1971.1162205. · doi:10.1109/TAU.1971.1162205
[47] S. S. Tsirkin, High performance Wannier interpolation of Berry curvature and related quan-tities with WannierBerri code, npj Comput. Mater. 7, 33 (2021), doi:10.1038/s41524-021-00498-5. · doi:10.1038/s41524-021-00498-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.