×

Enumerating Kleinian groups. (English) Zbl 1518.57032

Detinko, Alla (ed.) et al., Computational aspects of discrete subgroups of Lie groups. Virtual conference, Institute for Computational and Experimental Research in Mathematics, ICERM, Providence, Rhode Island, USA June 14–18, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 783, 1-25 (2023).
In this paper an overview of the tools and techniques needed for successfully classifying “low-complexity” Kleinian groups is given. In particular the manuscript is focused on extracting topological and geometric properties of discrete Kleinian groups, such as bounds on tube radii, cusp geometry, volume, relators in group presentation and similar quantities. A key point of this work is to explain how a discrete set of solutions (or of their closure) can be found using continuous methods, in particular by searching over a continuous parameter space of groups. The parameter space \(\mathcal{P}\subset \mathbb{C}^{d}\) is build to be large enough in order to include parameters representing each interesting equivalence class of markings that arise from a hyperbolic manifold. As a result, the goal of the paper is to describe methods to eliminate places of the parameter space where some geometric measurement violates discreteness or other assumptions. Thus, the hard work of the paper is to understand how to cut away “bad” portions of the parameter space where, for example, discrete groups cannot exist. At this point the generators of the groups play an essential role. In the paper many interesting examples which focus on 2 or 3 generator subgroups are presented, as their parameter space is small enough to apply computational methods. Generally, the present work provides effective methods for studying and classifying hyperbolic 3-manifolds that satisfy some geometric or topological constraints.
For the entire collection see [Zbl 1511.20004].

MSC:

57M50 General geometric structures on low-dimensional manifolds
51M10 Hyperbolic and elliptic geometries (general) and generalizations
51M25 Length, area and volume in real or complex geometry
57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes
Full Text: DOI

References:

[1] IEEE standard for binary floating-point arithmetic, ANSI/IEEE Std 754-1985 (1985), 1-20.
[2] Adams, Colin C., The noncompact hyperbolic \(3\)-manifold of minimal volume, Proc. Amer. Math. Soc., 601-606 (1987) · Zbl 0634.57008 · doi:10.2307/2046691
[3] Agol, Ian, Bounds on exceptional Dehn filling, Geom. Topol., 431-449 (2000) · Zbl 0959.57009 · doi:10.2140/gt.2000.4.431
[4] Agol, Ian, Volume change under drilling, Geom. Topol., 905-916 (2002) · Zbl 1031.57014 · doi:10.2140/gt.2002.6.905
[5] Agol, Ian, Bounds on exceptional Dehn filling II, Geom. Topol., 1921-1940 (2010) · Zbl 1201.57011 · doi:10.2140/gt.2010.14.1921
[6] Agol, Ian, Dehn surgery, homology and hyperbolic volume, Algebr. Geom. Topol., 2297-2312 (2006) · Zbl 1129.57019 · doi:10.2140/agt.2006.6.2297
[7] Agol, Ian, Lower bounds on volumes of hyperbolic Haken 3-manifolds, J. Amer. Math. Soc., 1053-1077 (2007) · Zbl 1155.58016 · doi:10.1090/S0894-0347-07-00564-4
[8] Mark Bell, Tracy Hall, and Saul Schleimer, Twister (computer software), https://bitbucket.org/Mark_Bell/twister/, 2008-2014, Version 2.4.1.
[9] John Berge, heegaard3, Available at https://github.com/3-manifolds/heegaard3, (2021-12-23).
[10] Bleiler, Steven A., Spherical space forms and Dehn filling, Topology, 809-833 (1996) · Zbl 0863.57009 · doi:10.1016/0040-9383(95)00040-2
[11] Boyer, Steven, Handbook of geometric topology. Dehn surgery on knots, 165-218 (2002), North-Holland, Amsterdam · Zbl 1058.57004
[12] Benjamin A. Burton, Ryan Budney, William Pettersson, et al., Regina: Software for low-dimensional topology, http://regina-normal.github.io/, 1999-2021.
[13] Cao, Chun, The orientable cusped hyperbolic \(3\)-manifolds of minimum volume, Invent. Math., 451-478 (2001) · Zbl 1028.57010 · doi:10.1007/s002220100167
[14] Coulson, David, Computing arithmetic invariants of 3-manifolds, Experiment. Math., 127-152 (2000) · Zbl 1002.57044
[15] Crawford, Thomas, A Stronger Gordon Conjecture and an Analysis of Free Bicuspid Manifolds with Small Cusps, 62 pp. (2018), ProQuest LLC, Ann Arbor, MI
[16] Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks, SnapPy, a computer program for studying the geometry and topology of \(3\)-manifolds, Available at http://snappy.computop.org (2021-12-23).
[17] David Futer, David Gabai, and Andrew Yarmola, On the Margulis constant of hyperbolic 3-manifolds, In progress.
[18] Futer, David, Effective bilipschitz bounds on drilling and filling, Geom. Topol., 1077-1188 (2022) · Zbl 1502.30126 · doi:10.2140/gt.2022.26.1077
[19] Gabai, David, The Smale conjecture for hyperbolic 3-manifolds: \( \text{Isom}(M^3)\simeq \text{Diff}(M^3)\), J. Differential Geom., 113-149 (2001) · Zbl 1030.57026
[20] David Gabai, Robert Haraway, Robert Meyerhoff, Nathaniel Thurston, and Andrew Yarmola, Hyperbolic 3-manifolds of low cusp volume, 2021.
[21] David Gabai, Marc Lackenby, and Andrew Yarmola, Bounds on exceptional Dehn surgery, In preparation.
[22] Gabai, David, Homotopy hyperbolic 3-manifolds are hyperbolic, Ann. of Math. (2), 335-431 (2003) · Zbl 1052.57019 · doi:10.4007/annals.2003.157.335
[23] Gabai, David, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc., 1157-1215 (2009) · Zbl 1204.57013 · doi:10.1090/S0894-0347-09-00639-0
[24] Gabai, David, Exceptional hyperbolic 3-manifolds, Comment. Math. Helv., 703-730 (2015) · Zbl 1331.57021 · doi:10.4171/CMH/368
[25] Oliver Goodman, Snap, a computer program for studying arithmetic invariants of hyperbolic 3-manifolds, Available at http://www.ms.unimelb.edu.au/ snap.
[26] Gordon, C. McA., Knot theory. Dehn filling: a survey, Banach Center Publ., 129-144 (1995), Polish Acad. Sci. Inst. Math., Warsaw · Zbl 0916.57016
[27] Robert Haraway, Manifold enumeration software of “hyperbolic 3-manifolds of low cusp volume”, Available at https://github.com/bobbycyiii/low-cusp-volume (2021-12-23).
[28] Robert Haraway et al., Coover: presentations to triangulations, Available at https://github.com/bobbycyiii/coover (2021-12-23).
[29] Hodgson, Craig D., Universal bounds for hyperbolic Dehn surgery, Ann. of Math. (2), 367-421 (2005) · Zbl 1087.57011 · doi:10.4007/annals.2005.162.367
[30] Hodgson, Craig D., The shape of hyperbolic Dehn surgery space, Geom. Topol., 1033-1090 (2008) · Zbl 1144.57015 · doi:10.2140/gt.2008.12.1033
[31] Lackenby, Marc, The maximal number of exceptional Dehn surgeries, Invent. Math., 341-382 (2013) · Zbl 1263.57013 · doi:10.1007/s00222-012-0395-2
[32] Marshall, T. H., Minimal co-volume hyperbolic lattices, II: Simple torsion in a Kleinian group, Ann. of Math. (2), 261-301 (2012) · Zbl 1252.30030 · doi:10.4007/annals.2012.176.1.4
[33] Meyerhoff, Robert, The cusped hyperbolic \(3\)-orbifold of minimum volume, Bull. Amer. Math. Soc. (N.S.), 154-156 (1985) · Zbl 0602.57009 · doi:10.1090/S0273-0979-1985-15401-1
[34] Meyerhoff, Robert, Sphere-packing and volume in hyperbolic \(3\)-space, Comment. Math. Helv., 271-278 (1986) · Zbl 0611.57010 · doi:10.1007/BF02621915
[35] Neumann, Walter D., Volumes of hyperbolic three-manifolds, Topology, 307-332 (1985) · Zbl 0589.57015 · doi:10.1016/0040-9383(85)90004-7
[36] Grisha Perelman, The entropy formula for the ricci flow and its geometric applications, 2002. · Zbl 1130.53001
[37] Grisha Perelman, Ricci flow with surgery on three-manifolds, 2003. · Zbl 1130.53002
[38] Shimizu, Hideo, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2), 33-71 (1963) · Zbl 0218.10045 · doi:10.2307/1970201
[39] William P. Thurston, Geometry and topology of three-manifolds, Lecture notes available at http://library.msri.org/books/gt3m/ (2021-12-23), 1978.
[40] Thurston, William P., Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, x+311 pp. (1997), Princeton University Press, Princeton, NJ · Zbl 0873.57001
[41] Maria Trnkova and Andrew Yarmola, On maximal systoles of low-genus hyperbolic surfaces, In progress.
[42] Jeffrey R. Weeks, Snap, Available at http://www.geometrygames.org/SnapPea/index.html.
[43] Andrew Yarmola, Verification software for “Hyperbolic 3-manifolds of low cusp volume”, Available at https://github.com/andrew-yarmola/verify-cusp (2021-12-23).
[44] \bysame , Visualization software for “Hyperbolic 3-manifolds of low cusp volume”, Available at https://github.com/andrew-yarmola/low-cusp-volume (2021-12-23).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.