×

Hyperbolic 4-manifolds with perfect circle-valued Morse functions. (English) Zbl 1490.57024

The study of circle-valued Morse functions was initiated by S. P. Novikov in 1980 while investigating a problem in hydrodynamics.
Given a compact \(n\)-dimensional manifold \(M\), possibly with boundary, a circle-valued Morse function on \(M\) is a smooth function with values in \(S^1\), \(f:M\rightarrow S^1\), such that all its critical points are non-degenerate and \(f|_{\partial M}\) has no critical points. A circle-valued Morse function \(f:M\rightarrow S^1\) is called perfect if the number of critical points of \(f\) is equal to \(|\chi(X)|\). In the odd-dimensional case, one has that \(\chi(M)=0\), hence a perfect circle-valued Morse function is a fibration. In the two-dimensional case, every closed orientable surface admits a perfect circle-valued Morse function.
In the paper under review, the authors investigate the existence of perfect circle-valued Morse functions on finite-volume hyperbolic \(4\)-manifolds which are compact or cusped. Note that a finite-volume hyperbolic \(4\)-manifold \(M\) is either closed or the interior of a compact manifold with boundary \(M^{\ast}\). Hence, in the latter case, one defines a circle-valued Morse function on \(M\) as the restriction of one on \(M^{\ast}\).
In this paper, the authors construct two cusped hyperbolic \(4\)-manifolds \(W\) and \(X\) and one closed hyperbolic \(4\)-manifold \(Z\), each of which admits a perfect circle-valued Morse function. These manifolds are built by coloring some right-angled polytopes. The circle-valued Morse functions on these manifolds are built using some techniques presented in [M. Bestvina and N. Brady, Invent. Math. 129, No. 3, 445–470 (1997; Zbl 0888.20021); M. Conder and C. Maclachlan, Proc. Am. Math. Soc. 133, No. 8, 2469–2476 (2005; Zbl 1071.57013)] together with some arguments presented in the paper.
Moreover, the authors establish some topological information about \(W\), \(X\), and \(Z\), such as the number of cusps, the Euler characteristic, and the Betti numbers over \(\mathbb{R}\). Furthermore, the authors prove that there are infinitely many finite-volume (compact and cusped) hyperbolic \(4\)-manifolds \(M\) with bounded Betti numbers \(\beta_1 (M)\) and \(\beta_3 (M)\) and rank of \(\pi_1 (M)\).

MSC:

57K40 General topology of 4-manifolds
57R70 Critical points and critical submanifolds in differential topology
57M50 General geometric structures on low-dimensional manifolds
57N16 Geometric structures on manifolds of high or arbitrary dimension

Software:

Regina; SnapPea; SnapPy

References:

[1] Agol, Ian, The virtual Haken conjecture, Doc. Math., 18, 1045-1087 (2013) · Zbl 1286.57019
[2] AS I. Agol and M. Stover, Congruence RFRS towers, With an appendix by M. Seng\" un 1912.10283, to appear in Ann. Inst. Fourier, 2019.
[3] Agol, I.; Long, D. D.; Reid, A. W., The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. (2), 153, 3, 599-621 (2001) · Zbl 1067.20067 · doi:10.2307/2661363
[4] Bat L. Battista, Infinitesimal rigidity of cubulated manifolds, in preparation.
[5] Bell M. Bell, Recognising mapping classes, PhD thesis.
[6] Bestvina, Mladen; Brady, Noel, Morse theory and finiteness properties of groups, Invent. Math., 129, 3, 445-470 (1997) · Zbl 0888.20021 · doi:10.1007/s002220050168
[7] Bleiler, Steven A.; Hodgson, Craig D.; Weeks, Jeffrey R., Cosmetic surgery on knots. Proceedings of the Kirbyfest, Berkeley, CA, 1998, Geom. Topol. Monogr. 2, 23-34 (1999), Geom. Topol. Publ., Coventry · Zbl 0948.57017 · doi:10.2140/gtm.1999.2.23
[8] Brock, Jeffrey F.; Bromberg, Kenneth W., On the density of geometrically finite Kleinian groups, Acta Math., 192, 1, 33-93 (2004) · Zbl 1055.57020 · doi:10.1007/BF02441085
[9] Bromberg, K., Projective structures with degenerate holonomy and the Bers density conjecture, Ann. of Math. (2), 166, 1, 77-93 (2007) · Zbl 1137.30014 · doi:10.4007/annals.2007.166.77
[10] BBP B. Burton, R. Budney, W. Pettersson et al., Regina: Software for low-dimensional topology, http://regina-normal.github.io/, 1999-2021.
[11] Callahan, Patrick J.; Hildebrand, Martin V.; Weeks, Jeffrey R., A census of cusped hyperbolic \(3\)-manifolds, Math. Comp., 68, 225, 321-332 (1999) · Zbl 0910.57006 · doi:10.1090/S0025-5718-99-01036-4
[12] Conder, Marston; Maclachlan, Colin, Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc., 133, 8, 2469-2476 (2005) · Zbl 1071.57013 · doi:10.1090/S0002-9939-05-07634-3
[13] Sna M. Culler, N. Dunfield, M. G\"orner, and J. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, http://www.math.uic.edu/t3m/SnapPy/
[14] Davis, Michael W., A hyperbolic \(4\)-manifold, Proc. Amer. Math. Soc., 93, 2, 325-328 (1985) · Zbl 0533.51015 · doi:10.2307/2044771
[15] Everitt, Brent; Ratcliffe, John G.; Tschantz, Steven T., Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel, Math. Ann., 354, 3, 871-905 (2012) · Zbl 1260.57028 · doi:10.1007/s00208-011-0744-2
[16] FKS L Ferrari, A. Kolpakov, and L. Slavich, Cusps of hyperbolic 4-manifolds and rational homology spheres, 2009.09995 2021, to appear on Proc. London Math. Soc.
[17] Friedl, Stefan; Vidussi, Stefano, Virtual algebraic fibrations of K\"{a}hler groups, Nagoya Math. J., 243, 42-60 (2021) · Zbl 1471.32038 · doi:10.1017/nmj.2019.32
[18] Heard, Damian; Pervova, Ekaterina; Petronio, Carlo, The 191 orientable octahedral manifolds, Experiment. Math., 17, 4, 473-486 (2008) · Zbl 1171.57017
[19] Hirsch, Morris W.; Mazur, Barry, Smoothings of piecewise linear manifolds, Annals of Mathematics Studies, No. 80, ix+134 pp. (1974), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo · Zbl 0298.57007
[20] IMM G. Italiano, B. Martelli, and M. Migliorini, Hyperbolic manifolds that fiber algebraically up to dimension 8, 2010.10200, 2021.
[21] Jankiewicz, Kasia; Norin, Sergey; Wise, Daniel T., Virtually fibering right-angled Coxeter groups, J. Inst. Math. Jussieu, 20, 3, 957-987 (2021) · Zbl 1508.20045 · doi:10.1017/S1474748019000422
[22] Johnson, N. W.; Ratcliffe, J. G.; Kellerhals, R.; Tschantz, S. T., The size of a hyperbolic Coxeter simplex, Transform. Groups, 4, 4, 329-353 (1999) · Zbl 0953.20041 · doi:10.1007/BF01238563
[23] Kapovich, Michael, On the absence of Sullivan’s cusp finiteness theorem in higher dimensions. Algebra and analysis, Irkutsk, 1989, Amer. Math. Soc. Transl. Ser. 2 163, 77-89 (1995), Amer. Math. Soc., Providence, RI · Zbl 0840.57023 · doi:10.1090/trans2/163/07
[24] Kielak, Dawid, Residually finite rationally solvable groups and virtual fibring, J. Amer. Math. Soc., 33, 2, 451-486 (2020) · Zbl 1480.20102 · doi:10.1090/jams/936
[25] Kielak, Dawid, The Bieri-Neumann-Strebel invariants via Newton polytopes, Invent. Math., 219, 3, 1009-1068 (2020) · Zbl 1480.20101 · doi:10.1007/s00222-019-00919-9
[26] Kerckhoff, Steven P.; Storm, Peter A., Local rigidity of hyperbolic manifolds with geodesic boundary, J. Topol., 5, 4, 757-784 (2012) · Zbl 1275.57028 · doi:10.1112/jtopol/jts018
[27] Kolpakov, Alexander; Martelli, Bruno, Hyperbolic four-manifolds with one cusp, Geom. Funct. Anal., 23, 6, 1903-1933 (2013) · Zbl 1283.57022 · doi:10.1007/s00039-013-0247-2
[28] Kolpakov, Alexander; Slavich, Leone, Hyperbolic 4-manifolds, colourings and mutations, Proc. Lond. Math. Soc. (3), 113, 2, 163-184 (2016) · Zbl 1354.57029 · doi:10.1112/plms/pdw025
[29] Martelli, Bruno, Hyperbolic four-manifolds. Handbook of group actions. Vol. III, Adv. Lect. Math. (ALM) 40, 37-58 (2018), Int. Press, Somerville, MA · Zbl 1416.53035
[30] Martelli, Bruno; Riolo, Stefano, Hyperbolic Dehn filling in dimension four, Geom. Topol., 22, 3, 1647-1716 (2018) · Zbl 1422.57045 · doi:10.2140/gt.2018.22.1647
[31] Munkres, James, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2), 72, 521-554 (1960) · Zbl 0108.18101 · doi:10.2307/1970228
[32] Namazi, Hossein; Souto, Juan, Non-realizability and ending laminations: proof of the density conjecture, Acta Math., 209, 2, 323-395 (2012) · Zbl 1258.57010 · doi:10.1007/s11511-012-0088-0
[33] Potyagailo, Leonid; Vinberg, Ernest, On right-angled reflection groups in hyperbolic spaces, Comment. Math. Helv., 80, 1, 63-73 (2005) · Zbl 1072.20046 · doi:10.4171/CMH/4
[34] Ratcliffe, John G.; Tschantz, Steven T., The volume spectrum of hyperbolic 4-manifolds, Experiment. Math., 9, 1, 101-125 (2000) · Zbl 0963.57012
[35] Rourke, C. P.; Sanderson, B. J., Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, viii+123 pp. (1972), Springer-Verlag, New York-Heidelberg · Zbl 0254.57010
[36] Thurston, William P., A norm for the homology of \(3\)-manifolds, Mem. Amer. Math. Soc., 59, 339, i-vi and 99-130 (1986) · Zbl 0585.57006
[37] Wang, Hsien Chung, Topics on totally discontinuous groups. Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), 459-487. Pure and Appl. Math., Vol. 8 (1972), Dekker, New York · Zbl 0232.22018
[38] W D. T. Wise, The structure of groups with a quasi-convex hierarchy, preprint. http://www.math.mcgill.ca/wise/papers · Zbl 1511.20002
[39] codeM http://people.dm.unipi.it/martelli/research.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.