×

Genus-two mutant knots with the same dimension in knot Floer and Khovanov homologies. (English) Zbl 1314.57009

Summary: We exhibit an infinite family of knots with isomorphic knot Heegaard Floer homology. Each knot in this infinite family admits a nontrivial genus-two mutant which shares the same total dimension in both knot Floer homology and Khovanov homology. Each knot is distinguished from its genus-two mutant by both knot Floer homology and Khovanov homology as bigraded groups. Additionally, for both knot Heegaard Floer homology and Khovanov homology, the genus-two mutation interchanges the groups in \(\delta\)-gradings \(k\) and \(-k\).

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57R58 Floer homology

Software:

Khoho; SnapPy; HFK; HFKcalc

References:

[1] J A Baldwin, W D Gillam, Computations of Heegaard-Floer knot homology, J. Knot Theory Ramifications 21 (2012) 1250075, 65 · Zbl 1288.57010 · doi:10.1142/S0218216512500757
[2] J A Baldwin, A S Levine, A combinatorial spanning tree model for knot Floer homology, Adv. Math. 231 (2012) 1886 · Zbl 1262.57013 · doi:10.1016/j.aim.2012.06.006
[3] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 · Zbl 0998.57016 · doi:10.2140/agt.2002.2.337
[4] J M Bloom, Odd Khovanov homology is mutation invariant, Math. Res. Lett. 17 (2010) 1 · Zbl 1226.57017 · doi:10.4310/MRL.2010.v17.n1.a1
[5] D Cooper, W B R Lickorish, Mutations of links in genus \(2\) handlebodies, Proc. Amer. Math. Soc. 127 (1999) 309 · Zbl 0905.57004 · doi:10.1090/S0002-9939-99-04871-6
[6] M Culler, N M Dunfield, J R Weeks, Snappy: A computer program for studying the geometry and topology of \(3\)-manifolds
[7] J M Droz, A program calculating the knot Floer homology
[8] N M Dunfield, S Garoufalidis, A Shumakovitch, M Thistlethwaite, Behavior of knot invariants under genus \(2\) mutation, New York J. Math. 16 (2010) 99 · Zbl 1231.57005
[9] J E Greene, Homologically thin, nonquasialternating links, Math. Res. Lett. 17 (2010) 39 · Zbl 1232.57008 · doi:10.4310/MRL.2010.v17.n1.a4
[10] J E Greene, L Watson, Turaev torsion, definite \(4\)-manifolds and quasialternating knots, Bull. Lond. Math. Soc. 45 (2013) 962 · Zbl 1420.57021 · doi:10.1112/blms/bds096
[11] M Hedden, L Watson, On the geography and botany of knot Floer homology, · Zbl 1432.57027
[12] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 · Zbl 0960.57005 · doi:10.1215/S0012-7094-00-10131-7
[13] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 · Zbl 1080.57015 · doi:10.1016/j.aim.2004.10.015
[14] W B R Lickorish, An introduction to knot theory, Graduate Texts in Math. 175, Springer (1997) · Zbl 0886.57001 · doi:10.1007/978-1-4612-0691-0
[15] C Maclachlan, A W Reid, The arithmetic of hyperbolic \(3\)-manifolds, Graduate Texts in Math. 219, Springer (2003) · Zbl 1025.57001 · doi:10.1007/978-1-4757-6720-9
[16] S Morrison, Javakh-v2: A program for Computing Khovanov homology
[17] P Ozsváth, Z Szabó, On the skein exact squence for knot Floer homology,
[18] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 · Zbl 1037.57027 · doi:10.2140/gt.2003.7.615
[19] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[20] P Ozsváth, Z Szabó, Knot Floer homology, genus bounds and mutation, Topology Appl. 141 (2004) 59 · Zbl 1052.57012 · doi:10.1016/j.topol.2003.09.009
[21] P Ozsváth, Z Szabó, D Thurston, Legendrian knots, transverse knots and combinatorial Floer homology, Geom. Topol. 12 (2008) 941 · Zbl 1144.57012 · doi:10.2140/gt.2008.12.941
[22] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)
[23] J A Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 · Zbl 1211.57009 · doi:10.1007/s00222-010-0275-6
[24] D Ruberman, Mutation and volumes of knots in \(S^3\), Invent. Math. 90 (1987) 189 · Zbl 0634.57005 · doi:10.1007/BF01389038
[25] A Shumakovitch, Khoho: A program for computing and studying Khovanov homology
[26] L Starkston, The Khovanov homology of \((p,-p,q)\) pretzel knots, J. Knot Theory Ramifications 21 (2012) 1250056, 14 · Zbl 1237.57014 · doi:10.1142/S0218216511010103
[27] L Watson, Knots with identical Khovanov homology, Algebr. Geom. Topol. 7 (2007) 1389 · Zbl 1137.57020 · doi:10.2140/agt.2007.7.1389
[28] S M Wehrli, Mutation invariance of Khovanov homology over \(\mathbb F_2\), Quantum Topol. 1 (2010) 111 · Zbl 1246.57020 · doi:10.4171/QT/3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.