×

Link misspecification in generalized linear mixed models with a random intercept for binary responses. (English) Zbl 1420.62321

Summary: We present in this paper tests for link misspecification in generalized linear mixed models with a random intercept for binary responses. To facilitate model diagnosis, we consider two types of grouped responses induced from the original responses and also stochastically create reclassified binary responses. Maximum likelihood estimators based on the original observed data and the counterpart estimators based on different induced data sets are investigated in the presence of link misspecification. Results from this investigation motivate four diagnostic tests for assessing the adequacy of an assumed link, which can provide information on how the true link differs from an assumed symmetric link when the proposed tests reject the assumed link. The performance of these tests is illustrated via simulation studies in comparison with an existing method for checking link assumptions. These tests are applied to a data set from a longitudinal study that was analyzed in the existing literature using logistic regression.

MSC:

62J12 Generalized linear models (logistic models)
62F03 Parametric hypothesis testing

Software:

STUKEL
Full Text: DOI

References:

[1] Agresti A, Caffo B (2002) Measures of relative model fit. Comput Stat Data Anal 39:127-136 · Zbl 1132.62317 · doi:10.1016/S0167-9473(01)00054-8
[2] Alonso A, Litière S, Molenberghs G (2008) A family of tests to detect misspecifications in random-effects structure of generalized linear mixed models. Comput Stat Data Anal 52:4474-4486 · Zbl 1452.62532 · doi:10.1016/j.csda.2008.02.033
[3] Aranda-Ordaz FJ (1981) On two families of transformations to additivity for binary response data. Biometrika 68:357-363 · Zbl 0466.62098 · doi:10.1093/biomet/68.2.357
[4] Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171-178 · Zbl 0581.62014
[5] Boos DD, Stefanski LA (2013) Essential statistical inference, theory and methods. Springer, New York · Zbl 1276.62016 · doi:10.1007/978-1-4614-4818-1
[6] Caffo B, Ming-Wen A, Rohde C (2007) Flexible random intercept models for binary outcomes using mixtures of normals. Comput Stat Data Anal 51:5220-5235 · Zbl 1445.62191 · doi:10.1016/j.csda.2006.09.031
[7] Chambers E, Cox D (1967) Discrimination between alternative binary response models. Biometrika 67:250-251
[8] Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman and Hall, London · Zbl 0334.62003 · doi:10.1007/978-1-4899-2887-0
[9] Czado C, Santner TJ (1992) The effect of link misspecification on binary regression inference. J Stat Plan Inference 33:213-231 · Zbl 0781.62037 · doi:10.1016/0378-3758(92)90069-5
[10] Dorfman R (1943) The detection of defective members of large populations. Ann Math Stat 14:436-440 · doi:10.1214/aoms/1177731363
[11] Guerrero VM, Johnson RA (1982) Use of the Box-Cox transformation with binary response models. Biometrika 69:309-314 · doi:10.1093/biomet/69.2.309
[12] Huang X (2009) Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response. Biometrics 65:361-368 · Zbl 1165.62351 · doi:10.1111/j.1541-0420.2008.01103.x
[13] Huang X (2011) Detecting random-effects model misspecification via coarsened data. Comput Stat Data Anal 55:703-714 · Zbl 1247.62194 · doi:10.1016/j.csda.2010.06.012
[14] Huang X (2013) Tests for random effects in linear mixed models using missing data. Stat Sinica 23:1043-1070 · Zbl 1534.62088
[15] Jiang X, Dey D, Prunier R, Wilson A, Holsinger K (2013) A new class of flexible link functions with application to species co-occurrence in cape floristic region. Ann Appl Stat 7:2180-2204 · Zbl 1283.62228 · doi:10.1214/13-AOAS663
[16] Kim S, Chen M, Dey D (2008) Flexible generalized \[t\] t-link models for binary response data. Biometrika 95:93-106 · Zbl 1437.62513 · doi:10.1093/biomet/asm079
[17] Li K, Duan N (1989) Regression analysis under link violation. Ann Stat 17:1009-1052 · Zbl 0753.62041 · doi:10.1214/aos/1176347254
[18] McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall/CRC, London · Zbl 0744.62098 · doi:10.1007/978-1-4899-3242-6
[19] Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer series in statistics. Springer, New York · Zbl 1093.62002
[20] Morgan B (1983) Observations on quantitative analysis. Biometrics 39:879-886 · Zbl 0532.62089 · doi:10.2307/2531323
[21] Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135:370-384 · doi:10.2307/2344614
[22] Neuhaus JM (2002) Analysis of clustered and longitudinal binary data subject to response misclassification. Biometrics 58:675-683 · Zbl 1210.62196 · doi:10.1111/j.0006-341X.2002.00675.x
[23] Neuhaus JM, Hauck WW, Kalbfleisch JD (1992) The effects of mixture distribution specification when fitting mixed-effects logistic models. Biometrics 79:755-762 · doi:10.1093/biomet/79.4.755
[24] Owen DB (1956) Tables for computing bivariate normal probabilities. Ann Math Stat 27:1075-1090 · Zbl 0073.13405 · doi:10.1214/aoms/1177728074
[25] Pan Z, Lin DY (2005) Goodness-of-fit methods for generalized linear mixed models. Biometrics 61:1000-1009 · Zbl 1087.62081 · doi:10.1111/j.1541-0420.2005.00365.x
[26] Ritz C (2004) Goodness-of-fit tests for mixed models. Scand J Stat 31:443-458 · Zbl 1062.62081 · doi:10.1111/j.1467-9469.2004.02_101.x
[27] Samejima F (2000) Logistic positive exponent family of models: virtue of asymmetric item characteristic curves. Psychometrika 65:319-335 · Zbl 1291.62243 · doi:10.1007/BF02296149
[28] Sommer A, Katz J, Tarwotjo I (1984) Increased risk of respiratory infection and diarrhea in children with preexisting mild vitamin A deficiency. Am J Clin Nutr 40:1090-1095 · doi:10.1093/ajcn/40.5.1090
[29] Stukel T (1988) Generalized logistic models. J Am Stat Assoc 83:426-431 · doi:10.1080/01621459.1988.10478613
[30] Tchetgen EJ, Coull BA (2006) A diagnostic test for the mixing distribution in a generalised linear mixed model. Biometrika 93:1003-1010 · Zbl 1436.62364 · doi:10.1093/biomet/93.4.1003
[31] Verbeke G, Molenberghs G (2013) The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models. Biostatistics 14:477-490 · doi:10.1093/biostatistics/kxs059
[32] Waagepetersen R (2006) A simulation-based goodness-of-fit test for random effects in generalized linear mixed models. Scand J Stat 33:721-731 · Zbl 1164.62348 · doi:10.1111/j.1467-9469.2006.00504.x
[33] Wang YH (1993) On the number of successes in independent trials. Stat Sinica 3:295-312 · Zbl 0822.60006
[34] Wang Z, Louis TA (2003) Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution function. Biometrika 90:765-775 · Zbl 1436.62294 · doi:10.1093/biomet/90.4.765
[35] Wang Z, Louis TA (2004) Marginalized binary mixed-effects with covariate-dependent random effects and likelihood inference. Biometrics 60:884-891 · Zbl 1274.62182 · doi:10.1111/j.0006-341X.2004.00243.x
[36] White H (1981) Consequence and detection of misspecified nonlinear regression models. J Am Stat Assoc 76:419-433 · Zbl 0467.62058 · doi:10.1080/01621459.1981.10477663
[37] Whittemore A (1983) Transformations to linearity in binary regression. J Appl Math 43:703-710 · Zbl 0524.62107
[38] Yu S, Huang X (2017) Random-intercept misspecification in generalized linear mixed models for binary responses. Stat Methods Appl 26:333-359 · Zbl 1384.62274 · doi:10.1007/s10260-017-0376-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.