×

MCBTE: a variance-reduced Monte Carlo solution of the linearized Boltzmann transport equation for phonons. (English) Zbl 07695379

Summary: MCBTE solves the linearized Boltzmann transport equation for phonons in three-dimensions using a variance-reduced Monte Carlo solution approach. The algorithm is suited for both transient and steady-state analysis of thermal transport in structured materials with size features in the nanometer to hundreds of microns range. The code is portable and integrated with both first-principles density functional theory calculations and empirical relations for the input of phonon frequency, group velocity, and mean free path required for calculating the thermal properties. The program outputs space- and time-resolved temperature and heat flux for the transient study. For the steady-state simulations, the frequency-resolved contribution of phonons to temperature and heat flux is written to the output files, thus allowing the study of cumulative thermal conductivity as a function of phonon frequency or mean free path. We provide several illustrative examples, including ballistic and quasi-ballistic thermal transport, the thermal conductivity of thin films and periodic nanostructures, to demonstrate the functionality and to benchmark our code against available theoretical/analytical/computational results from the literature. Moreover, we parallelize the code using the Matlab Distributed Computing Server, providing near-linear scaling with the number of processors.

MSC:

80-XX Classical thermodynamics, heat transfer
74-XX Mechanics of deformable solids

References:

[1] Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C., Science, 354, 6308, 99-102 (2016)
[2] Chen, G., Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (2005), Oxford University Press
[3] Cahill, D. G.; Braun, P. V.; Chen, G.; Clarke, D. R.; Fan, S.; Goodson, K. E.; Keblinski, P.; King, W. P.; Mahan, G. D.; Majumdar, A., Appl. Phys. Rev., 1, 1, Article 011305 pp. (2014)
[4] Ziman, J. M., Electrons and Phonons: The Theory of Transport Phenomena in Solids (2001), Oxford University Press · Zbl 0088.24004
[5] Mazumder, S.; Majumdar, A., J. Heat Transf., 123, 4, 749-759 (2001)
[6] Péraud, J.-P. M.; Hadjiconstantinou, N. G., Phys. Rev. B, 84, 20, Article 205331 pp. (2011)
[7] Péraud, J.-P. M.; Hadjiconstantinou, N. G., Appl. Phys. Lett., 101, 15, Article 153114 pp. (2012)
[8] Péraud, J.-P. M.; Landon, C. D.; Hadjiconstantinou, N. G., Annu. Rev. Heat Transf., 17 (2014)
[9] Narumanchi, S. V.; Murthy, J. Y.; Amon, C. H., J. Heat Transf., 126, 6, 946-955 (2004)
[10] Majumdar, A., J. Heat Transf., 115, 1, 7-16 (1993)
[11] Chai, J. C.; Lee, H. S.; Patankar, S. V., J. Thermophys. Heat Transf., 8, 3, 419-425 (1994)
[12] Ravishankar, M.; Mazumder, S.; Kumar, A., J. Heat Transf., 132, 2 (2010)
[13] Mittal, A., Prediction of non-equilibrium heat conduction in crystalline materials using the Boltzmann transport equation for phonons (2011), The Ohio State University, Ph.D. thesis
[14] Baker, L. L.; Hadjiconstantinou, N. G., Phys. Fluids, 17, 5, Article 051703 pp. (2005) · Zbl 1187.76032
[15] Klitsner, T.; VanCleve, J.; Fischer, H. E.; Pohl, R., Phys. Rev. B, 38, 11, 7576 (1988)
[16] Peterson, R., J. Heat Transf., 116, 4, 815-822 (1994)
[17] Lacroix, D.; Joulain, K.; Lemonnier, D., Phys. Rev. B, 72, 6, Article 064305 pp. (2005)
[18] Hao, Q.; Chen, G.; Jeng, M.-S., J. Appl. Phys., 106, 11, Article 114321 pp. (2009)
[19] Chernatynskiy, A.; Phillpot, S. R., Comput. Phys. Commun., 192, 196-204 (2015) · Zbl 1380.65468
[20] Togo, A.; Chaput, L.; Tanaka, I., Phys. Rev. B, 91, Article 094306 pp. (2015)
[21] Carrete, J.; Vermeersch, B.; Katre, A.; van Roekeghem, A.; Wang, T.; Madsen, G. K.; Mingo, N., Comput. Phys. Commun., 220, 351-362 (2017) · Zbl 1411.82006
[22] Tadano, T.; Gohda, Y.; Tsuneyuki, S., J. Phys. Condens. Matter, 26, 22, Article 225402 pp. (2014)
[23] Cercignani, C., (The Boltzmann Equation and Its Applications (1988), Springer), 40-103 · Zbl 0646.76001
[24] Ecsedy, D.; Klemens, P., Phys. Rev. B, 15, 12, 5957 (1977)
[25] Feng, T.; Lindsay, L.; Ruan, X., Phys. Rev. B, 96, 16, Article 161201 pp. (2017)
[26] Feng, T.; Ruan, X., Phys. Rev. B, 93, 4, Article 045202 pp. (2016)
[27] Pascual-Gutiérrez, J. A.; Murthy, J. Y.; Viskanta, R., J. Appl. Phys., 106, 6, Article 063532 pp. (2009)
[28] Bhatnagar, P. L.; Gross, E. P.; Krook, M., Phys. Rev., 94, 3, 511 (1954) · Zbl 0055.23609
[29] Hadjiconstantinou, N. G.; Garcia, A. L.; Bazant, M. Z.; He, G., J. Comput. Phys., 187, 1, 274-297 (2003) · Zbl 1047.76578
[30] Jeng, M.-S.; Yang, R.; Song, D.; Chen, G., J. Heat Transf., 130, 4 (2008)
[31] Bird, G., Phys. Fluids, 6, 1518-1519 (1963)
[32] Wagner, W., J. Stat. Phys., 66, 3-4, 1011-1044 (1992) · Zbl 0899.76312
[33] Bird, G. A.; Brady, J., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, vol. 42 (1994), Clarendon Press: Clarendon Press Oxford
[34] Ravichandran, N. K.; Zhang, H.; Minnich, A. J., Phys. Rev. X, 8, 4, Article 041004 pp. (2018)
[35] (2020), Phonon-code
[36] Péraud, J.-P. M., Efficient multiscale methods for micro/nanoscale solid state heat transfer (2015), Massachusetts Institute of Technology, Ph.D. thesis
[37] Kim, D. S.; Hellman, O.; Herriman, J.; Smith, H.; Lin, J.; Shulumba, N.; Niedziela, J.; Li, C.; Abernathy, D.; Fultz, B., Proc. Natl. Acad. Sci. USA, 115, 9, 1992-1997 (2018)
[38] Ravichandran, N. K.; Minnich, A. J., Phys. Rev. B, 89, 20, Article 205432 pp. (2014)
[39] Nardi, D.; Travagliati, M.; Siemens, M. E.; Li, Q.; Murnane, M. M.; Kapteyn, H. C.; Ferrini, G.; Parmigiani, F.; Banfi, F., Nano Lett., 11, 10, 4126-4133 (2011)
[40] Hoogeboom-Pot, K. M.; Hernandez-Charpak, J. N.; Gu, X.; Frazer, T. D.; Anderson, E. H.; Chao, W.; Falcone, R. W.; Yang, R.; Murnane, M. M.; Kapteyn, H. C., Proc. Natl. Acad. Sci. USA, 112, 16, 4846-4851 (2015)
[41] Siemens, M. E.; Li, Q.; Yang, R.; Nelson, K. A.; Anderson, E. H.; Murnane, M. M.; Kapteyn, H. C., Nat. Mater., 9, 1, 26-30 (2010)
[42] Jiang, P.; Qian, X.; Yang, R., J. Appl. Phys., 124, 16, Article 161103 pp. (2018)
[43] Johnson, J. A.; Maznev, A.; Cuffe, J.; Eliason, J. K.; Minnich, A. J.; Kehoe, T.; Torres, C. M.S.; Chen, G.; Nelson, K. A., Phys. Rev. Lett., 110, 2, Article 025901 pp. (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.