×

Development of finite element models for studying the electrical excitation of myocardium. (English) Zbl 1302.92055

Summary: The propagation of the electrical excitation wave in the isotropic and anisotropic finite element models of the myocardium is studied. The geometrical image of the heart is constructed on the basis of magnetic resonance tomography (MRT) data by the region growing method. A filtering algorithm is proposed for elimination of excess details. The propagation of the myocardium excitation impulse is described in the framework of the monodomain model of conductivity. The Aliev-Panfilov and Beeler-Reuter equations are used to relate the transmembrane current to transmembrane potential. The model equations are solved by the splitting method. The influence of the degree of approximation on the performance of the finite element model is investigated. The interaction between the additional excitation source and the propagating excitation wave is considered. The proposed model allowed us to trace the propagation of the excitation impulse through the curvilinear isotropic media and in the 3D image of the heart obtained on the basis of MRT data.

MSC:

92C55 Biomedical imaging and signal processing
74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
92C05 Biophysics
Full Text: DOI

References:

[1] Petrov V.G.: Mechano-mathematical model of cardiac fibre length-pressure pulsations. Acta Mechanica. 87, 239-250 (1991) · Zbl 0743.92008 · doi:10.1007/BF01299797
[2] Treece G.M., Prager R.W.: Surface interpolation from sparse cross sections using region correspondence. Trans. Med. Imaging 19(11), 23-29 (2000) · doi:10.1109/42.896787
[3] Li B., Acton S.: Active contour external force using vector field convolution for image segmentation. Trans. Med. Imaging 16(8), 38-44 (2007)
[4] Heimann T., Meinzer H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543-563 (2009) · doi:10.1016/j.media.2009.05.004
[5] Del Fresno M., Vénere M.: Combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans. Comput. Med. Imaging Gr. 33, 369-376 (2009) · doi:10.1016/j.compmedimag.2009.03.002
[6] Vadakkumpadan F. et al.: Image-based models of cardiac structure in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(4), 489-506 (2010) · doi:10.1002/wsbm.76
[7] Sundnes J., Lines G.T, Xing Cai, Nielsen B.F., Mardal K.-A., Tveito A.: Computing the Electrical Activity in the Heart. Springer, Berlin (2006) · Zbl 1182.92020
[8] Sachse F.B.: Computational Cardiology. Modelling of Anatomy, Electrophysiology and Mechanics. Springer, Berlin (2004) · Zbl 1051.92025 · doi:10.1007/b96841
[9] http://www.code-aster.org
[10] http://cmrg.ucsd.edu/
[11] http://www.cs.ox.ac.uk/chaste/
[12] http://www.febio.org/
[13] http://sourceforge.net/apps/mediawiki/opencmiss/ · Zbl 1296.92120
[14] http://www.dealii.org/
[15] Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4) article 24 (2007) · Zbl 1365.65248
[16] http://libmesh.sourceforge.net/ · Zbl 0970.65129
[17] Kirk B., Peterson J.W., Stogner R.H., Carey G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3-4), 237-254 (2006) · doi:10.1007/s00366-006-0049-3
[18] http://atlas.gcsc.uni-frankfurt.de/ ug/
[19] Bastian P., Birken K., Johannsen K., Lang S., Neuß N., Rentz-Reichert H., Wieners C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1(1), 27-40 (1997) · Zbl 0970.65129 · doi:10.1007/s007910050003
[20] http://dune.mathematik.uni-freiburg.de/
[21] Dender, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A Generic Interface for Parallel and Adaptive Scientific Computing: Abstraction Principles and the DUNE-FEM Module. Preprint No. 3, Mathematisches Institut, Universität Freiburg (2009)
[22] http://download.gna.org/getfem/html/homepage/
[23] http://www.freefem.org/ff++/
[24] http://fenicsproject.org/ · Zbl 0743.92008
[25] Logg A., Mardal K.-A., Wells G.N. et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012) · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8
[26] Logg, A., Wells, G. N.: DOLFIN: automated finite element computing. ACM Trans. Math. Soft. 37(2) (2010) · Zbl 1364.65254
[27] Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32(3) (2006)
[28] Rudraraju, S., Mills, K. L., Kemkemer, R., Garikipati, K.: Multiphysics modeling of reactions, mass transport and mechanics of tumor growth. In: Holzapfel, G., Kuhl, E.(eds.) Computer Models in Biomechanics, pp. 293-303. Spinger, Berlin (2013) · Zbl 1325.92023
[29] Steigemann M., Schramm B.: Precise computation and error control of stress intensity factors and certain integral characteristics in anisotropic inhomogeneous materials. Int. J. Fract. 182, 67-91 (2013) · doi:10.1007/s10704-013-9859-7
[30] Leonard, K.: Multiphase modelling of tissue engineering. In: Proceedings of the University of Oxford Department of Computer Science Student Conference 2011, pp. 18-19 (2011)
[31] Vavourakis V., Loukidis D., Charmpis D. C., Papanastasiou P.: A robust finite element approach for large deformation elastoplastic plane-strain problems. Finite Elem. Anal. Des. 77, 1-15 (2013) · Zbl 1291.74182 · doi:10.1016/j.finel.2013.08.003
[32] Bordas R.M., Gillow K., Gavaghan D., Rodriguez B., Kay D.: A bidomain model of the ventricular specialized conduction system of the heart. SIAM J. Appl. Math. 72(5), 1618-1643 (2012) · Zbl 1325.92023 · doi:10.1137/11082796X
[33] Brinkmeier M., Nackenhorst U., Petersen S., Estorff O.von.: A numerical model for the simulation of tire rolling noise. J. Sound Vib. 309(1-2), 20-39 (2008) · doi:10.1016/j.jsv.2006.11.040
[34] Lu S. et al.: Multiscale modeling in rodent ventricular myocytes. IEEE Eng. Med. Biol. Mag. 28(2), 46-57 (2009) · doi:10.1109/MEMB.2009.931787
[35] Matveenko V.P., Shardakov I.N., Shestakov A.P.: The algorithm for constructing 3D images of th human body organs based on the tomographic data. Russ. J. Biomech. 5(4), 20-32 (2011)
[36] Matveenko V.P., Shardakov I.N., Shestakov A.P.: Development of finite element models of human skeleton bones and their application to the natural vibration problem. Comput. Mech. Contin. Media 5(3), 308-312 (2012) · doi:10.7242/1999-6691/2012.5.3.36
[37] Kim W.-J., Kim S.-D.: 3D binary morphological operations using run-length representation. Signal Process. Image Commun. 23, 442-450 (2008) · doi:10.1016/j.image.2008.04.010
[38] http://www.osirix-viewer.com/datasets/ (Access data 17/07/2013) · Zbl 1296.92120
[39] Pratt, W.K.: Digital Image Processing. New York (1978) · Zbl 0728.68142
[40] Aliev R.R., Panfilov A.V.: A simple model of cardiac excitation. Chaos Solitons Fract. 7(3), 293-301 (1996) · doi:10.1016/0960-0779(95)00089-5
[41] Nash M.P., Panfilov A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501-522 (2004) · doi:10.1016/j.pbiomolbio.2004.01.016
[42] Beeler G.W., Reuter H.: Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 268(1), 177-210 (1977)
[43] http://models.cellml.org/cellml/
[44] Whiteley J.P, Bishop M.J., Gavaghan D.J.: Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Math. Biol. 69(7), 2199-2225 (2007) · Zbl 1296.92120
[45] Nash M.P., Hunter P.J.: Computational mechanics of the heart. J. Elast. 61(1-3), 113-141 (2000) · Zbl 1071.74659 · doi:10.1023/A:1011084330767
[46] Usyk T.P., Mazhari R., McCulloch A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61(1-3), 143-164 (2000) · Zbl 0974.92002 · doi:10.1023/A:1010883920374
[47] Sainte-Marie J., Chapelle D., Cimrman R., Sorine M.: Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84(28), 1743-1759 (2006) · doi:10.1016/j.compstruc.2006.05.003
[48] Izakov V.Y., Katsnelson L.B., Blyakhman F.A., Markhasin V.S., Shklyar T.F.: Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading. Circ. Res. 69(5), 1171-1184 (1991) · doi:10.1161/01.RES.69.5.1171
[49] Hunter P.J., McCulloch A.D., ter Keurs H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289-331 (1998) · doi:10.1016/S0079-6107(98)00013-3
[50] Nickerson D.P, Smith N.P., Hunter P.J.: A model of cardiac cellular electromechanics. Philos. Trans. R. Soc. Lond. A 359, 1159-1172 (2001) · Zbl 0994.92015 · doi:10.1098/rsta.2001.0823
[51] Nardinocchi P., Teresi L.: On the active response of soft living tissues. J. Elast. 88, 27-39 (2007) · Zbl 1115.74349 · doi:10.1007/s10659-007-9111-7
[52] Ambrosi D., Pezzuto S.: Active stress vs. active strain in mechanobiology: constitutive issues. J. Elast. 10(2), 199-212 (2012) · Zbl 1312.74015 · doi:10.1007/s10659-011-9351-4
[53] Zabel M., Koller B.S., Sachs F., Franz M.R.: Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc. Res. 32, 120-130 (1996) · doi:10.1016/S0008-6363(96)00089-2
[54] Rush S., Larsen H.: A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. BME 25(4), 389-392 (1978) · doi:10.1109/TBME.1978.326270
[55] https://launchpad.net/cbc.solve
[56] Göktepe S., Kuhl E.: Computational modeling of cardiac electrophysiology: a novel finite element approach. Int. J. Numer. Methods Eng. 79, 156-178 (2009) · Zbl 1171.92310 · doi:10.1002/nme.2571
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.