×

A parallel multigrid method for constrained minimization problems and its application to friction, contact, and obstacle problems. (English) Zbl 1360.65175

Summary: The parallel solution of constrained minimization problems requires special care to be taken with respect to the information transfer between the different subproblems. Here, we present a nonlinear decomposition approach which employs an additional nonlinear correction step along the processor interfaces. Our approach is generic in the sense that it can be applied to a wide class of minimization problems with strongly local nonlinearities, including even nonsmooth minimization problems. We also describe the implementation of our nonlinear decomposition method in the object oriented library ObsLib\(++\). The flexibility of our approach and its implementation is presented along different problem classes as obstacle problems, frictional contact problems and biomechanical applications. For the same examples, number of iterations, computation time, and parallelization speedup are measured, and the results demonstrate that the implementation scales reasonably well up to 4096 processors.

MSC:

65K10 Numerical optimization and variational techniques
65Y05 Parallel numerical computation
15A09 Theory of matrix inversion and generalized inverses
15A15 Determinants, permanents, traces, other special matrix functions
15A23 Factorization of matrices
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74M10 Friction in solid mechanics
74M15 Contact in solid mechanics

Software:

UG; PARDISO
Full Text: DOI

References:

[1] Badea, L.: Convergence rate of a multiplicative schwarz method for strongly nonlinear variational inequalities. In: Barbu, V., Lasiecka, I., Tiba, D., Varsan, C. (eds.) Analysis and Optimization of Differential Systems. IFIP The International Federation for Information Processing, vol. 121, pp. 31-41. Springer, Berlin (2003) · Zbl 1146.65329
[2] Badea, L.: Global convergence rate of a standard multigrid method for variational inequalities. IMA J. Numer. Anal. 34(1), 197-216 (2014). doi:10.1093/imanum/drs054 · Zbl 1291.65191
[3] Badea, L., Tai, X.-C., Wang, J.: Convergence rate analysis of a multiplicative Schwarz method for variational inequalities. SIAM J. Numer. Anal. 41(3), 1052-1073 (2003) · Zbl 1052.65058 · doi:10.1137/S0036142901393607
[4] Badea, L.: Multigrid methods for some quasi-variational inequalities. Discrete Contin. Dyn. Syst. Ser. S 6(6), 1457-1471 (2013) · Zbl 1266.65109 · doi:10.3934/dcdss.2013.6.1457
[5] Badea, L., Krause, R.: One- and two-level schwarz methods for variational inequalities of the second kind and their application to frictional contact. Numer. Math. 120(4), 573-599 (2012) · Zbl 1250.65087 · doi:10.1007/s00211-011-0423-y
[6] Badea, L., Wang, J.: An additive Schwarz method for variational inequalities. Math. Comput. 69(232), 1341-1354 (1999) · Zbl 0954.65051 · doi:10.1090/S0025-5718-99-01164-3
[7] Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27-40 (1997) · Zbl 0970.65129 · doi:10.1007/s007910050003
[8] Berrenberg, S., Krause, R.: Efficient parallel simulation of biphasic materials in biomechanics. In: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, vol. 7(1) (2007) · Zbl 1057.65040
[9] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Hoboken (1983) · Zbl 0582.49001
[10] Ehlers, W., Markert, B.: A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J. Biomech. Eng. Trans. ASME 123, 418-424 (2001) · doi:10.1115/1.1388292
[11] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North Holland, Amsterdam (1976) · Zbl 0322.90046
[12] Ferris, M.C., Mangasarian, O.L.: Parallel variable distribution. SIAM J. Optim. 4(4), 815-832 (1994) · Zbl 0820.90098 · doi:10.1137/0804047
[13] Frommer, A., Renaut, R.A.: Parallel space decomposition for minimization of nonlinear functionals. In: Yang, T. (ed.) Parallel Numerical Computation with Applications. Proceedings of the Workshop on Frontiers of Parallel Numerical Computations and Applications, Organized in the IEEE 7th Symposium on the Frontiers on Massively Parallel Computers (Frontiers ’99) at Annapolis, MD, USA, 20-25 February 1999. Kluwer Academic Publishers, Boston. Kluwer Int. Ser. Eng. Comput. Sci., vol. 515, pp. 53-61 (1999) · Zbl 0945.65064
[14] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Series in Computational Physics. Springer, New York (1984) · Zbl 0536.65054 · doi:10.1007/978-3-662-12613-4
[15] Grillo, A.; Giverso, C.; Favino, M.; Krause, R.; Lampe, M.; Wittum, G.; Delgado, JMPQ (ed.); Lima, AGB (ed.); Silva, MV (ed.), Mass transport in porous media with variable mass, 27-61 (2012), Berlin · doi:10.1007/978-3-642-30532-0_2
[16] Groß, C., Krause, R.: A recursive trust-region method for non-convex constrained minimization. In: Domain Decomposition Methods in Science and Engineering XVIII, Volume 70 of Lecture Notes in Computational Science and Engineering, pp. 137-144, 09 (2009) · Zbl 1183.65077
[17] Groß, C., Krause, R.: On the convergence of recursive trust-region methods for multiscale non-linear optimization and applications to non-linear mechanics. SIAM J. Numer. Anal. 47(4), 3044-3069, 09 (2009) · Zbl 1410.90198
[18] Hüeber, S., Wohlmuth, B.: Equilibration techniques for solving contact problems with Coulomb friction. Comput. Methods Appl. Mech. Eng. 205-208, 29-45 (2012) · Zbl 1239.74068 · doi:10.1016/j.cma.2010.12.021
[19] Hwang, F.-N., Cai, X.-C.: A parallel nonlinear additive Schwarz preconditioned inexact newton algorithm for incompressible Navier-Stokes equations. J. Comput. Phys. 204(2), 666-691 (2005) · Zbl 1267.76083 · doi:10.1016/j.jcp.2004.10.025
[20] Izi, R., Konyukhov, A., Schweizerhof, K.: Large penetration algorithm for 3D frictionless contact problems based on a covariant form. Comput. Methods Appl. Mech. Eng. 217220, 186-196 (2012) · Zbl 1253.74063 · doi:10.1016/j.cma.2012.01.012
[21] Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988) · Zbl 0685.73002 · doi:10.1137/1.9781611970845
[22] Kornhuber, R., Gräser, C.: On preconditioned uzawa-type iterations for a saddle point problem with inequality constraints. In: Domain Decomposition Methods in Science and Engineering XVI, pp. 91-102 (2006)
[23] Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities I. Numer. Math. 69, 167-184 (1994) · Zbl 0817.65051
[24] Kornhuber, R.: Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Teubner, Stuttgart (1997) · Zbl 0879.65041
[25] Kornhuber, R.: On constrained Newton linearization and multigrid for variational inequalities. Numer. Math. 91, 699-721 (2002) · Zbl 1003.65070 · doi:10.1007/s002110100341
[26] Kornhuber, R., Krause, R.: Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4, 9-20 (2001) · Zbl 1051.74045 · doi:10.1007/s007910100052
[27] Kornhuber, R., Krause, R.: Robust multigrid methods for vector-valued Allen-Cahn equations with logarithmic free energy. Comput. Vis. Sci. 9, 103-116 (2006) · Zbl 1511.65100 · doi:10.1007/s00791-006-0020-2
[28] Krause, R.; Wriggers, P. (ed.); Nackenhorst, U. (ed.), From inexact active set strategies to nonlinear multigrid methods, No. 27 (2006), Berlin · Zbl 1194.74423 · doi:10.1007/3-540-31761-9_2
[29] Krause, R.: A non-smooth multiscale method for solving frictional two-body contact problems in 2D and 3D with multigrid efficiency. SIAM J. Sci. Comput. 31(2), 1399-1423 (2009) · Zbl 1193.74103 · doi:10.1137/070682514
[30] Krause, R., Mohr, C.: Level set based multi-scale methods for large deformation contact problems. Appl. Numer. Math. 61(4), 428-442 (2009) · Zbl 1366.74049 · doi:10.1016/j.apnum.2010.11.007
[31] Krause, R., Walloth, M.: A time discretization scheme based on Rothe’s method for dynamical contact problems with friction. Comput. Methods Appl. Mech. Eng. 199, 1-19 (2009) · Zbl 1231.74470 · doi:10.1016/j.cma.2009.08.022
[32] Krause, R., Walloth, M.: A family of space-time connecting discretization schemes for elastodynamic contact problems with local impact detection. Int. J. Numer. Methods Eng. 200, 3425-3438 (2011) · Zbl 1230.74216
[33] Krause, R., Walloth, M.: Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl. Numer. Math. 62, 1393-1410 (2012) · Zbl 1295.74072 · doi:10.1016/j.apnum.2012.06.014
[34] Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17(1), R1-R62 (2004) · doi:10.1088/0953-8984/17/1/R01
[35] Schenk, O., Gärtner, K., Fichtner, W., Stricker, A.: Pardiso: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Future Gener. Comput. Syst. 18(1), 69-78 (2001). I. High Performance Numerical Methods and Applications. II. Performance Data Mining: Automated Diagnosis, Adaption, and Optimization · Zbl 1032.68172
[36] Suwannachit, A., Nackenhorst, U., Chiarello, R.: Stabilized numerical solution for transient dynamic contact of inelastic solids on rough surfaces. Comput. Mech. 49(6), 769-788 (2012) · Zbl 1312.74021 · doi:10.1007/s00466-012-0722-x
[37] Tai, X.C.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Numer. Math. 93, 755-786 (2003) · Zbl 1057.65040 · doi:10.1007/s002110200404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.