×

A semi-implicit method for incompressible three-phase flow in porous media. (English) Zbl 1387.76050

Summary: In this paper, we present a semi-implicit method for the incompressible three-phase flow equations in two dimensions. In particular, a high-order discontinuous Galerkin spatial discretization is coupled with a backward Euler discretization in time. We consider a pressure-saturation formulation, decouple the pressure and saturation equations, and solve them sequentially while still keeping each equation implicit in its respective unknown. We present several numerical examples on both homogeneous and heterogeneous media, with varying permeability and porosity. Our results demonstrate the robustness of the scheme. In particular, no slope limiters are required and a relatively large time step may be taken.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76T30 Three or more component flows

Software:

COUPLEX; UG
Full Text: DOI

References:

[1] Abreu, E., Douglas, J., Furtado, F., Marchesin, D., Pereira, F.: Three-phase immiscible displacement in heterogeneous petroleum reservoirs. Math. Comput. Simul. 73(1), 2-20 (2006) · Zbl 1158.76346 · doi:10.1016/j.matcom.2006.06.018
[2] Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers (1979)
[3] Baker, L.: Three-phase relative permeability correlations. Society of Petroleum Engineers (1988). SPE-17369-M
[4] Bastian, P.: A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18, 779-796 (2014) · Zbl 1392.76072 · doi:10.1007/s10596-014-9426-y
[5] Bastian, P., Lang, S.: Couplex benchmark computations obtained with the software toolbox ug. Comput. Geosci. 8(2), 125-147 (2004) · Zbl 1060.86001 · doi:10.1023/B:COMG.0000035075.31334.a2
[6] Bentsen, R.G., Anli, J.: A new displacement capillary pressure model. J. Can. Pet. Technol. 15(3), 75-79 (1976)
[7] Berre, I., Dahle, H., Karlson, K., Nordhaug, H.: A streamline front tracking method for two- and three-phase flow including capillary forces. In: Proceedings of an AMS-IMS-SIAM, Joint Summer Research Conference on Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment, vol. 295, pp 49-61 (2002) · Zbl 1077.76068
[8] Brooks, R., Corey, A.: Hydraulic properties of porous media. Hydrol. Pap 3, 26-28 (1964)
[9] Chen, Z., Ewing, R.E.: Comparison of various formulations of three-phase flow in porous media. J. Comput. Phys. 132(2), 362-373 (1997) · Zbl 0880.76089 · doi:10.1006/jcph.1996.5641
[10] Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006) · Zbl 1092.76001 · doi:10.1137/1.9780898718942
[11] Christie, M., Blunt, M.: Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Res. Simul. Symp. 4, 308-317 (2001)
[12] Dong, J.: A high order method for three phase flow in homogeneous porous media. SIURO 7, 74-88 (2014) · doi:10.1137/13S012637
[13] Epshteyn, Y., Rivière, B.: Fully implicit discontinuous finite element methods for two-phase flow. Appl. Numer. Math. 57, 383-401 (2007) · Zbl 1370.76085 · doi:10.1016/j.apnum.2006.04.004
[14] Ern, A., Mozolevski, I.: Discontinuous Galerkin method for two-component liquid gas porous media flows. Comput. Geosci. 16, 677-690 (2012) · doi:10.1007/s10596-012-9277-3
[15] Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199, 1491-1501 (2010) · Zbl 1231.76143 · doi:10.1016/j.cma.2009.12.014
[16] Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1), 404-419 (2006) · Zbl 1120.76327 · doi:10.1016/j.cma.2006.05.007
[17] Li, J., Rivière, B.: Numerical solutions of the incompressible miscible displacement equations in heterogeneous media. Comput. Methods Appl. Mech. Eng. 292, 107-121 (2015) · Zbl 1423.76254 · doi:10.1016/j.cma.2014.10.048
[18] Lu, Q., Peszynska, M., Wheeler, M.: A parallel multi-block black-oil model in multi-model implementation. Soc. Pet. Eng. 7, 278-287 (2002). SPE 79535
[19] Natvig, J.R., Lie, K.A.: Fast computation of multiphase flow in porous media by implicit discontinuous galerkin schemes with optimal ordering of elements. J. Comput. Phys. 227(24), 10,108-10,124 (2008) · Zbl 1218.76029 · doi:10.1016/j.jcp.2008.08.024
[20] Rankin, R., Rivière, B.: A high order method for solving the black-oil problem in porous media. Adv. Water Resour. 78, 126-144 (2015) · doi:10.1016/j.advwatres.2015.01.007
[21] Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: Theory and implementation. Soc. Ind. Appl. Math. (2008) · Zbl 1153.65112
[22] Trangenstein, J.A., Bell, J.B.: Mathematical structure of the black-oil model for petroleum reservoir simulation. SIAM J. Appl. Math. 49(3), 749-789 (1989) · Zbl 0669.76125 · doi:10.1137/0149044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.